Non-Neighbors Also Matter to Kriging: A New Contrastive-Prototypical
Learning
- URL: http://arxiv.org/abs/2401.12681v1
- Date: Tue, 23 Jan 2024 11:46:31 GMT
- Title: Non-Neighbors Also Matter to Kriging: A New Contrastive-Prototypical
Learning
- Authors: Zhishuai Li, Yunhao Nie, Ziyue Li, Lei Bai, Yisheng Lv, Rui Zhao
- Abstract summary: Existing works assume that neighbors' information offers the basis for estimating the attributes of the unobserved target.
We propose Contrastive-Prototypical'' self-supervised learning for Kriging to refine valuable information from neighbors and recycle the one from non-neighbors.
- Score: 24.701170582359104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kriging aims at estimating the attributes of unsampled geo-locations from
observations in the spatial vicinity or physical connections, which helps
mitigate skewed monitoring caused by under-deployed sensors. Existing works
assume that neighbors' information offers the basis for estimating the
attributes of the unobserved target while ignoring non-neighbors. However,
non-neighbors could also offer constructive information, and neighbors could
also be misleading. To this end, we propose ``Contrastive-Prototypical''
self-supervised learning for Kriging (KCP) to refine valuable information from
neighbors and recycle the one from non-neighbors. As a pre-trained paradigm, we
conduct the Kriging task from a new perspective of representation: we aim to
first learn robust and general representations and then recover attributes from
representations. A neighboring contrastive module is designed that coarsely
learns the representations by narrowing the representation distance between the
target and its neighbors while pushing away the non-neighbors. In parallel, a
prototypical module is introduced to identify similar representations via
exchanged prediction, thus refining the misleading neighbors and recycling the
useful non-neighbors from the neighboring contrast component. As a result, not
all the neighbors and some of the non-neighbors will be used to infer the
target. To encourage the two modules above to learn general and robust
representations, we design an adaptive augmentation module that incorporates
data-driven attribute augmentation and centrality-based topology augmentation
over the spatiotemporal Kriging graph data. Extensive experiments on real-world
datasets demonstrate the superior performance of KCP compared to its peers with
6% improvements and exceptional transferability and robustness. The code is
available at https://github.com/bonaldli/KCP
Related papers
- Contrast then Memorize: Semantic Neighbor Retrieval-Enhanced Inductive Multimodal Knowledge Graph Completion [12.504140924121872]
A large number of studies have emerged for Multimodal Knowledge Graph Completion (MKGC) to predict the missing links in MKGs.
Existing inductive approaches focus on learning textual entity representations, which neglect rich semantic information in visual modality.
We propose a semantic neighbor retrieval-enhanced IMKGC framework, where the contrast brings the helpful semantic neighbors close.
arXiv Detail & Related papers (2024-07-03T07:31:33Z) - Trust your Good Friends: Source-free Domain Adaptation by Reciprocal
Neighborhood Clustering [50.46892302138662]
We address the source-free domain adaptation problem, where the source pretrained model is adapted to the target domain in the absence of source data.
Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters.
We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood.
arXiv Detail & Related papers (2023-09-01T15:31:18Z) - Local Consensus Enhanced Siamese Network with Reciprocal Loss for
Two-view Correspondence Learning [35.5851523517487]
Two-view correspondence learning usually establish an end-to-end network to jointly predict correspondence reliability and relative pose.
We propose a Local Feature Consensus (LFC) plugin block to augment the features of existing models.
We extend existing models to a Siamese network with a reciprocal loss that exploits the supervision of mutual projection.
arXiv Detail & Related papers (2023-08-06T22:20:09Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
Image-text retrieval aims to bridge the modality gap and retrieve cross-modal content based on semantic similarities.
Re-ranking, a popular post-processing practice, has revealed the superiority of capturing neighbor relations in single-modality retrieval tasks.
We propose a novel learnable pillar-based re-ranking paradigm for image-text retrieval.
arXiv Detail & Related papers (2023-04-25T04:33:27Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Far Away in the Deep Space: Dense Nearest-Neighbor-Based
Out-of-Distribution Detection [33.78080060234557]
Nearest-Neighbors approaches have been shown to work well in object-centric data domains.
We show that nearest-neighbor approaches also yield state-of-the-art results on dense novelty detection in complex driving scenes.
arXiv Detail & Related papers (2022-11-12T13:32:19Z) - Improving Graph Collaborative Filtering with Neighborhood-enriched
Contrastive Learning [29.482674624323835]
We propose a novel contrastive learning approach, named Neighborhood-enriched Contrastive Learning, named NCL.
For the structural neighbors on the interaction graph, we develop a novel structure-contrastive objective that regards users (or items) and their structural neighbors as positive contrastive pairs.
In implementation, the representations of users (or items) and neighbors correspond to the outputs of different GNN layers.
arXiv Detail & Related papers (2022-02-13T04:18:18Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - Modelling Neighbor Relation in Joint Space-Time Graph for Video
Correspondence Learning [53.74240452117145]
This paper presents a self-supervised method for learning reliable visual correspondence from unlabeled videos.
We formulate the correspondence as finding paths in a joint space-time graph, where nodes are grid patches sampled from frames, and are linked by two types of edges.
Our learned representation outperforms the state-of-the-art self-supervised methods on a variety of visual tasks.
arXiv Detail & Related papers (2021-09-28T05:40:01Z) - Exploring Set Similarity for Dense Self-supervised Representation
Learning [96.35286140203407]
We propose to explore textbfset textbfsimilarity (SetSim) for dense self-supervised representation learning.
We generalize pixel-wise similarity learning to set-wise one to improve the robustness because sets contain more semantic and structure information.
Specifically, by resorting to attentional features of views, we establish corresponding sets, thus filtering out noisy backgrounds that may cause incorrect correspondences.
arXiv Detail & Related papers (2021-07-19T09:38:27Z) - A Unified Model for Recommendation with Selective Neighborhood Modeling [9.367539466637664]
We propose a novel neighborhood-based recommender, where a hybrid gated network is designed to automatically separate similar neighbors from dissimilar (noisy) ones.
We show that the proposed model consistently outperforms state-of-the-art neighborhood-based recommenders.
arXiv Detail & Related papers (2020-10-19T08:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.