Neural deformation fields for template-based reconstruction of cortical
surfaces from MRI
- URL: http://arxiv.org/abs/2401.12938v2
- Date: Mon, 4 Mar 2024 09:05:04 GMT
- Title: Neural deformation fields for template-based reconstruction of cortical
surfaces from MRI
- Authors: Fabian Bongratz, Anne-Marie Rickmann, Christian Wachinger
- Abstract summary: We introduce Vox2Cortex-Flow, a deep mesh-deformation technique that learns a deformation field from a brain template to the cortical surfaces of an MRI scan.
V2C-Flow is not only very fast, requiring less than two seconds to infer all four cortical surfaces.
We show that V2C-Flow results in cortical surfaces that are state-of-the-art in terms of accuracy.
- Score: 5.4173776411667935
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The reconstruction of cortical surfaces is a prerequisite for quantitative
analyses of the cerebral cortex in magnetic resonance imaging (MRI). Existing
segmentation-based methods separate the surface registration from the surface
extraction, which is computationally inefficient and prone to distortions. We
introduce Vox2Cortex-Flow (V2C-Flow), a deep mesh-deformation technique that
learns a deformation field from a brain template to the cortical surfaces of an
MRI scan. To this end, we present a geometric neural network that models the
deformation-describing ordinary differential equation in a continuous manner.
The network architecture comprises convolutional and graph-convolutional
layers, which allows it to work with images and meshes at the same time.
V2C-Flow is not only very fast, requiring less than two seconds to infer all
four cortical surfaces, but also establishes vertex-wise correspondences to the
template during reconstruction. In addition, V2C-Flow is the first approach for
cortex reconstruction that models white matter and pial surfaces jointly,
therefore avoiding intersections between them. Our comprehensive experiments on
internal and external test data demonstrate that V2C-Flow results in cortical
surfaces that are state-of-the-art in terms of accuracy. Moreover, we show that
the established correspondences are more consistent than in FreeSurfer and that
they can directly be utilized for cortex parcellation and group analyses of
cortical thickness.
Related papers
- DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - Reconstruction of Cortical Surfaces with Spherical Topology from Infant
Brain MRI via Recurrent Deformation Learning [16.9042503785353]
Cortical surface reconstruction (CSR) from MRI is key to investigating brain structure and function.
Here, we present a method for simultaneous and spherical mapping efficiently within seconds.
We demonstrate the efficacy of our approach on infant brain MRI, which poses significant challenges to CSR.
arXiv Detail & Related papers (2023-12-10T20:20:16Z) - NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
We present a novel method for 3D surface reconstruction from multiple images where only a part of the object of interest is captured.
Our approach builds on two recent developments: surface reconstruction using neural radiance fields for the reconstruction of the visible parts of the surface, and guidance of pre-trained 2D diffusion models in the form of Score Distillation Sampling (SDS) to complete the shape in unobserved regions in a plausible manner.
arXiv Detail & Related papers (2023-12-07T19:30:55Z) - Neural Vector Fields: Generalizing Distance Vector Fields by Codebooks
and Zero-Curl Regularization [73.3605319281966]
We propose a novel 3D representation, Neural Vector Fields (NVF), which adopts the explicit learning process to manipulate meshes and implicit unsigned distance function (UDF) representation to break the barriers in resolution and topology.
We evaluate both NVFs on four surface reconstruction scenarios, including watertight vs non-watertight shapes, category-agnostic reconstruction vs category-unseen reconstruction, category-specific, and cross-domain reconstruction.
arXiv Detail & Related papers (2023-09-04T10:42:56Z) - Joint Reconstruction and Parcellation of Cortical Surfaces [3.9198548406564604]
Reconstruction of cerebral cortex surfaces from brain MRI scans is instrumental for the analysis of brain morphology and the detection of cortical thinning in neurodegenerative diseases like Alzheimer's disease (AD)
In this work, we propose two options, one based on a graph classification branch and another based on a novel generic 3D reconstruction loss, to augment template-deformation algorithms.
We attain highly accurate parcellations with a Dice score of 90.2 (graph classification branch) and 90.4 (novel reconstruction loss) together with state-of-the-art surfaces.
arXiv Detail & Related papers (2022-09-19T11:45:39Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
We propose Vox2Cortex, a deep learning-based algorithm that directly yields topologically correct, three-dimensional meshes of the boundaries of the cortex.
We show in extensive experiments on three brain MRI datasets that our meshes are as accurate as the ones reconstructed by state-of-the-art methods in the field.
arXiv Detail & Related papers (2022-03-17T17:06:00Z) - CortexODE: Learning Cortical Surface Reconstruction by Neural ODEs [12.239318066719068]
CortexODE is a deep learning framework for cortical surface reconstruction.
It can be integrated to an automatic learning-based pipeline, which reconstructs surfaces efficiently in less than 6 seconds.
Our experiments demonstrate that the CortexODE-based pipeline can achieve less than 0.2mm average geometric error.
arXiv Detail & Related papers (2022-02-16T20:57:59Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.
Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as supervision.
We observe that the conventional volume rendering method causes inherent geometric errors for surface reconstruction.
We propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision.
arXiv Detail & Related papers (2021-06-20T12:59:42Z) - Surface Agnostic Metrics for Cortical Volume Segmentation and Regression [3.1543820811374483]
We propose a machine learning solution to predict cortical thickness and curvature metrics from T2 MRI images.
Results suggest that deep convolutional neural networks are a viable option to predict cortical metrics across a range of brain development stages and pathologies.
arXiv Detail & Related papers (2020-10-04T19:46:04Z) - Deep Modeling of Growth Trajectories for Longitudinal Prediction of
Missing Infant Cortical Surfaces [58.780482825156035]
We will introduce a method for longitudinal prediction of cortical surfaces using a spatial graph convolutional neural network (GCNN)
The proposed method is designed to model the cortical growth trajectories and jointly predict inner and outer curved surfaces at multiple time points.
We will demonstrate with experimental results that our method is capable of capturing the nonlinearity oftemporal cortical growth patterns.
arXiv Detail & Related papers (2020-09-06T18:46:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.