XAI for All: Can Large Language Models Simplify Explainable AI?
- URL: http://arxiv.org/abs/2401.13110v1
- Date: Tue, 23 Jan 2024 21:47:12 GMT
- Title: XAI for All: Can Large Language Models Simplify Explainable AI?
- Authors: Philip Mavrepis, Georgios Makridis, Georgios Fatouros, Vasileios
Koukos, Maria Margarita Separdani, Dimosthenis Kyriazis
- Abstract summary: "x-[plAIn]" is a new approach to make XAI more accessible to a wider audience through a custom Large Language Model.
Our goal was to design a model that can generate clear, concise summaries of various XAI methods.
Results from our use-case studies show that our model is effective in providing easy-to-understand, audience-specific explanations.
- Score: 0.0699049312989311
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The field of Explainable Artificial Intelligence (XAI) often focuses on users
with a strong technical background, making it challenging for non-experts to
understand XAI methods. This paper presents "x-[plAIn]", a new approach to make
XAI more accessible to a wider audience through a custom Large Language Model
(LLM), developed using ChatGPT Builder. Our goal was to design a model that can
generate clear, concise summaries of various XAI methods, tailored for
different audiences, including business professionals and academics. The key
feature of our model is its ability to adapt explanations to match each
audience group's knowledge level and interests. Our approach still offers
timely insights, facilitating the decision-making process by the end users.
Results from our use-case studies show that our model is effective in providing
easy-to-understand, audience-specific explanations, regardless of the XAI
method used. This adaptability improves the accessibility of XAI, bridging the
gap between complex AI technologies and their practical applications. Our
findings indicate a promising direction for LLMs in making advanced AI concepts
more accessible to a diverse range of users.
Related papers
- Study on the Helpfulness of Explainable Artificial Intelligence [0.0]
Legal, business, and ethical requirements motivate using effective XAI.
We propose to evaluate XAI methods via the user's ability to successfully perform a proxy task.
In other words, we address the helpfulness of XAI for human decision-making.
arXiv Detail & Related papers (2024-10-14T14:03:52Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAI is being extended towards Large Language Models (LLMs)
This paper analyzes how XAI can benefit LLMs and AI systems.
We introduce 10 strategies, introducing the key techniques for each and discussing their associated challenges.
arXiv Detail & Related papers (2024-03-13T20:25:27Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
The number and complexity of personalised and user-centred approaches to XAI have rapidly grown in recent years.
It emerged that user-centred approaches to XAI positively affect the interaction between users and systems.
We propose an assessment task to objectively and quantitatively measure the goodness of XAI systems.
arXiv Detail & Related papers (2023-12-07T15:49:39Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Responsibility: An Example-based Explainable AI approach via Training
Process Inspection [1.4610038284393165]
We present a novel XAI approach that identifies the most responsible training example for a particular decision.
This example can then be shown as an explanation: "this is what I (the AI) learned that led me to do that"
Our results demonstrate that responsibility can help improve accuracy for both human end users and secondary ML models.
arXiv Detail & Related papers (2022-09-07T19:30:01Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
A lack of consensus on how to evaluate explainable AI (XAI) hinders the advancement of the field.
We argue that one way to close the gap is to develop evaluation methods that account for different user requirements.
arXiv Detail & Related papers (2022-06-22T05:17:33Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Designer-User Communication for XAI: An epistemological approach to
discuss XAI design [4.169915659794568]
We take the Signifying Message as our conceptual tool to structure and discuss XAI scenarios.
We experiment with its use for the discussion of a healthcare AI-System.
arXiv Detail & Related papers (2021-05-17T13:18:57Z) - Questioning the AI: Informing Design Practices for Explainable AI User
Experiences [33.81809180549226]
A surge of interest in explainable AI (XAI) has led to a vast collection of algorithmic work on the topic.
We seek to identify gaps between the current XAI algorithmic work and practices to create explainable AI products.
We develop an algorithm-informed XAI question bank in which user needs for explainability are represented.
arXiv Detail & Related papers (2020-01-08T12:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.