Fast Partition-Based Cross-Validation With Centering and Scaling for $\mathbf{X}^\mathbf{T}\mathbf{X}$ and $\mathbf{X}^\mathbf{T}\mathbf{Y}$
- URL: http://arxiv.org/abs/2401.13185v2
- Date: Mon, 5 Aug 2024 10:01:48 GMT
- Title: Fast Partition-Based Cross-Validation With Centering and Scaling for $\mathbf{X}^\mathbf{T}\mathbf{X}$ and $\mathbf{X}^\mathbf{T}\mathbf{Y}$
- Authors: Ole-Christian Galbo Engstrøm, Martin Holm Jensen,
- Abstract summary: We present algorithms that substantially accelerate partition-based cross-validation for machine learning models.
Our algorithms have applications in model selection for, e.g., principal component analysis (PCA), principal component regression (PCR), ridge regression (RR), ordinary least squares (OLS) and partial least squares (PLS)
Unlike alternatives found in the literature, we avoid data leakage due to preprocessing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present algorithms that substantially accelerate partition-based cross-validation for machine learning models that require matrix products $\mathbf{X}^\mathbf{T}\mathbf{X}$ and $\mathbf{X}^\mathbf{T}\mathbf{Y}$. Our algorithms have applications in model selection for, e.g., principal component analysis (PCA), principal component regression (PCR), ridge regression (RR), ordinary least squares (OLS), and partial least squares (PLS). Our algorithms support all combinations of column-wise centering and scaling of $\mathbf{X}$ and $\mathbf{Y}$, and we demonstrate in our accompanying implementation that this adds only a manageable, practical constant over efficient variants without preprocessing. We prove the correctness of our algorithms under a fold-based partitioning scheme and show that the running time is independent of the number of folds; that is, they have the same time complexity as that of computing $\mathbf{X}^\mathbf{T}\mathbf{X}$ and $\mathbf{X}^\mathbf{T}\mathbf{Y}$ and space complexity equivalent to storing $\mathbf{X}$, $\mathbf{Y}$, $\mathbf{X}^\mathbf{T}\mathbf{X}$, and $\mathbf{X}^\mathbf{T}\mathbf{Y}$. Importantly, unlike alternatives found in the literature, we avoid data leakage due to preprocessing. We achieve these results by eliminating redundant computations in the overlap between training partitions. Concretely, we show how to manipulate $\mathbf{X}^\mathbf{T}\mathbf{X}$ and $\mathbf{X}^\mathbf{T}\mathbf{Y}$ using only samples from the validation partition to obtain the preprocessed training partition-wise $\mathbf{X}^\mathbf{T}\mathbf{X}$ and $\mathbf{X}^\mathbf{T}\mathbf{Y}$. To our knowledge, we are the first to derive correct and efficient cross-validation algorithms for any of the $16$ combinations of column-wise centering and scaling, for which we also prove only $12$ give distinct matrix products.
Related papers
- Learning a Single Neuron Robustly to Distributional Shifts and Adversarial Label Noise [38.551072383777594]
We study the problem of learning a single neuron with respect to the $L2$ loss in the presence of adversarial distribution shifts.
A new algorithm is developed to approximate the vector vector squared loss with respect to the worst distribution that is in the $chi2$divergence to the $mathcalp_0$.
arXiv Detail & Related papers (2024-11-11T03:43:52Z) - Compressing Large Language Models using Low Rank and Low Precision Decomposition [46.30918750022739]
This work introduces $rm CALDERA$ -- a new post-training LLM compression algorithm.
It harnesses the inherent low-rank structure of a weight matrix $mathbfW$ by approximating it via a low-rank, low-precision decomposition.
Results show that compressing LlaMa-$2$ $7$B/$13B$/$70$B and LlaMa-$3$ $8$B models using $rm CALDERA$ outperforms existing post-training compression techniques.
arXiv Detail & Related papers (2024-05-29T08:42:30Z) - Locality Regularized Reconstruction: Structured Sparsity and Delaunay Triangulations [7.148312060227714]
Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction.
In this work we seek $mathbfw$ that forms a local reconstruction of $mathbfy$ by solving a regularized least squares regression problem.
We prove that, for all levels of regularization and under a mild condition that the columns of $mathbfX$ have a unique Delaunay triangulation, the optimal coefficients' number of non-zero entries is upper bounded by $d+1$.
arXiv Detail & Related papers (2024-05-01T19:56:52Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - SQ Lower Bounds for Learning Mixtures of Linear Classifiers [43.63696593768504]
We show that known algorithms for this problem are essentially best possible, even for the special case of uniform mixtures.
The key technical ingredient is a new construction of spherical designs that may be of independent interest.
arXiv Detail & Related papers (2023-10-18T10:56:57Z) - Optimal Estimator for Linear Regression with Shuffled Labels [17.99906229036223]
This paper considers the task of linear regression with shuffled labels.
$mathbf Y in mathbb Rntimes m, mathbf Pi in mathbb Rntimes p, mathbf B in mathbb Rptimes m$, and $mathbf Win mathbb Rntimes m$, respectively.
arXiv Detail & Related papers (2023-10-02T16:44:47Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
We study the complexity of PAC learning halfspaces in the presence of Massart noise.
We show that no-time Massart halfspace learners can achieve error better than $Omega(eta)$, even if the optimal 0-1 error is small.
arXiv Detail & Related papers (2022-07-28T17:50:53Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems [86.92205445270427]
We consider non-con minimax problems, $min_mathbfx max_mathhidoty f(mathbfdoty)$ efficiently.
arXiv Detail & Related papers (2019-06-02T03:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.