Expressive Acoustic Guitar Sound Synthesis with an Instrument-Specific
Input Representation and Diffusion Outpainting
- URL: http://arxiv.org/abs/2401.13498v1
- Date: Wed, 24 Jan 2024 14:44:01 GMT
- Title: Expressive Acoustic Guitar Sound Synthesis with an Instrument-Specific
Input Representation and Diffusion Outpainting
- Authors: Hounsu Kim, Soonbeom Choi, Juhan Nam
- Abstract summary: We propose an expressive acoustic guitar sound synthesis model with a customized input representation to the instrument.
We implement the proposed approach using diffusion-based outpainting which can generate audio with long-term consistency.
Our proposed model has higher audio quality than the baseline model and generates more realistic timbre sounds.
- Score: 9.812666469580872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing performing guitar sound is a highly challenging task due to the
polyphony and high variability in expression. Recently, deep generative models
have shown promising results in synthesizing expressive polyphonic instrument
sounds from music scores, often using a generic MIDI input. In this work, we
propose an expressive acoustic guitar sound synthesis model with a customized
input representation to the instrument, which we call guitarroll. We implement
the proposed approach using diffusion-based outpainting which can generate
audio with long-term consistency. To overcome the lack of MIDI/audio-paired
datasets, we used not only an existing guitar dataset but also collected data
from a high quality sample-based guitar synthesizer. Through quantitative and
qualitative evaluations, we show that our proposed model has higher audio
quality than the baseline model and generates more realistic timbre sounds than
the previous leading work.
Related papers
- Annotation-Free MIDI-to-Audio Synthesis via Concatenative Synthesis and Generative Refinement [0.0]
CoSaRef is a MIDI-to-audio synthesis method that can be developed without MIDI-audio paired datasets.
It first performs concatenative synthesis based on MIDI inputs and then refines the resulting audio into realistic tracks using a diffusion-based deep generative model trained on audio-only datasets.
arXiv Detail & Related papers (2024-10-22T08:01:40Z) - Synthesizer Sound Matching Using Audio Spectrogram Transformers [2.5944208050492183]
We introduce a synthesizer sound matching model based on the Audio Spectrogram Transformer.
We show that this model can reconstruct parameters of samples generated from a set of 16 parameters.
We also provide audio examples demonstrating the out-of-domain model performance in emulating vocal imitations.
arXiv Detail & Related papers (2024-07-23T16:58:14Z) - Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt [50.25271407721519]
We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language.
We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation.
Experiments show that our model achieves favorable controlling ability and audio quality.
arXiv Detail & Related papers (2024-03-18T13:39:05Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
Deep generative models can generate high-fidelity audio conditioned on various types of representations.
These models are prone to generate audible artifacts when the conditioning is flawed or imperfect.
We propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality from low-bitrate discrete representations.
arXiv Detail & Related papers (2023-08-02T22:14:29Z) - Multitrack Music Transcription with a Time-Frequency Perceiver [6.617487928813374]
Multitrack music transcription aims to transcribe a music audio input into the musical notes of multiple instruments simultaneously.
We propose a novel deep neural network architecture, Perceiver TF, to model the time-frequency representation of audio input for multitrack transcription.
arXiv Detail & Related papers (2023-06-19T08:58:26Z) - Make-A-Voice: Unified Voice Synthesis With Discrete Representation [77.3998611565557]
Make-A-Voice is a unified framework for synthesizing and manipulating voice signals from discrete representations.
We show that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models.
arXiv Detail & Related papers (2023-05-30T17:59:26Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
multimodal generative modeling has created milestones in text-to-image and text-to-video generation.
Its application to audio still lags behind for two main reasons: the lack of large-scale datasets with high-quality text-audio pairs, and the complexity of modeling long continuous audio data.
We propose Make-An-Audio with a prompt-enhanced diffusion model that addresses these gaps.
arXiv Detail & Related papers (2023-01-30T04:44:34Z) - Deep Performer: Score-to-Audio Music Performance Synthesis [30.95307878579825]
Deep Performer is a novel system for score-to-audio music performance synthesis.
Unlike speech, music often contains polyphony and long notes.
We show that our proposed model can synthesize music with clear polyphony and harmonic structures.
arXiv Detail & Related papers (2022-02-12T10:36:52Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
We present a wav-to-wav generative model for the task of singing voice conversion from any identity.
Our method utilizes both an acoustic model, trained for the task of automatic speech recognition, together with melody extracted features to drive a waveform-based generator.
arXiv Detail & Related papers (2020-08-06T18:29:11Z) - Generative Modelling for Controllable Audio Synthesis of Expressive
Piano Performance [6.531546527140474]
controllable neural audio synthesizer based on Gaussian Mixture Variational Autoencoders (GM-VAE)
We demonstrate how the model is able to apply fine-grained style morphing over the course of the audio.
arXiv Detail & Related papers (2020-06-16T12:54:41Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
We present VaPar Synth - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation.
We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
arXiv Detail & Related papers (2020-03-30T16:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.