Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
- URL: http://arxiv.org/abs/2401.13627v2
- Date: Wed, 3 Apr 2024 08:12:08 GMT
- Title: Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
- Authors: Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, Chao Dong,
- Abstract summary: SUPIR (Scaling-UP Image Restoration) is a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up.
We collect a dataset comprising 20 million high-resolution, high-quality images for model training, each enriched with descriptive text annotations.
- Score: 57.06779516541574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SUPIR (Scaling-UP Image Restoration), a groundbreaking image restoration method that harnesses generative prior and the power of model scaling up. Leveraging multi-modal techniques and advanced generative prior, SUPIR marks a significant advance in intelligent and realistic image restoration. As a pivotal catalyst within SUPIR, model scaling dramatically enhances its capabilities and demonstrates new potential for image restoration. We collect a dataset comprising 20 million high-resolution, high-quality images for model training, each enriched with descriptive text annotations. SUPIR provides the capability to restore images guided by textual prompts, broadening its application scope and potential. Moreover, we introduce negative-quality prompts to further improve perceptual quality. We also develop a restoration-guided sampling method to suppress the fidelity issue encountered in generative-based restoration. Experiments demonstrate SUPIR's exceptional restoration effects and its novel capacity to manipulate restoration through textual prompts.
Related papers
- Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model [55.46927355649013]
We introduce a novel Multi-modal Guided Real-World Face Restoration technique.
MGFR can mitigate the generation of false facial attributes and identities.
We present the Reface-HQ dataset, comprising over 23,000 high-resolution facial images across 5,000 identities.
arXiv Detail & Related papers (2024-10-05T13:46:56Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
Existing unified methods treat multi-degradation image restoration as a multi-task learning problem.
We propose a universal image restoration framework based on multiple low-rank adapters (LoRA) from multi-domain transfer learning.
Our framework leverages the pre-trained generative model as the shared component for multi-degradation restoration and transfers it to specific degradation image restoration tasks.
arXiv Detail & Related papers (2024-09-30T11:16:56Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - InstructIR: High-Quality Image Restoration Following Human Instructions [61.1546287323136]
We present the first approach that uses human-written instructions to guide the image restoration model.
Our method, InstructIR, achieves state-of-the-art results on several restoration tasks.
arXiv Detail & Related papers (2024-01-29T18:53:33Z) - Improving Image Restoration through Removing Degradations in Textual
Representations [60.79045963573341]
We introduce a new perspective for improving image restoration by removing degradation in the textual representations of a degraded image.
To address the cross-modal assistance, we propose to map the degraded images into textual representations for removing the degradations.
In particular, We ingeniously embed an image-to-text mapper and text restoration module into CLIP-equipped text-to-image models to generate the guidance.
arXiv Detail & Related papers (2023-12-28T19:18:17Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
We develop SPIRE, a Semantic and restoration Prompt-driven Image Restoration framework.
Our approach is the first framework that supports fine-level instruction through language-based quantitative specification of the restoration strength.
Our experiments demonstrate the superior restoration performance of SPIRE compared to the state of the arts.
arXiv Detail & Related papers (2023-12-18T17:02:30Z) - Towards Authentic Face Restoration with Iterative Diffusion Models and
Beyond [30.114913184727]
We propose $textbfIDM$, an $textbfI$teratively learned face restoration system based on denoising $textbfD$iffusion.
We demonstrate superior performance on blind face restoration tasks.
arXiv Detail & Related papers (2023-07-18T06:31:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.