Topological fingerprints in Liouvillian gaps
- URL: http://arxiv.org/abs/2401.13732v2
- Date: Fri, 25 Oct 2024 13:41:25 GMT
- Title: Topological fingerprints in Liouvillian gaps
- Authors: Kevin Kavanagh, Joost K. Slingerland, Shane Dooley, Graham Kells,
- Abstract summary: Topology in many-body physics usually emerges as a feature of equilibrium quantum states.
We show that topological fingerprints can also appear in the relaxation rates of open quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topology in many-body physics usually emerges as a feature of equilibrium quantum states. We show that topological fingerprints can also appear in the relaxation rates of open quantum systems. To demonstrate this we consider one of the simplest models that has two topologically distinct phases in its ground state: the Kitaev chain model for the $p$-wave superconductor. After introducing dissipation to this model we estimate the Liouvillian gap in both strong and weak dissipative limits. Our results show that a non-zero superconducting pairing opens a Liouvillian gap that remains open in the limit of infinite system size. At strong dissipation this gap is essentially unaffected by the topology of the underlying Hamiltonian ground state. In contrast, when dissipation is weak, the topological phase of the Hamiltonian ground state plays a crucial role in determining the character of the Liouvillian gap. We find, for example, that in the topological phase this gap is completely immune to changes in the chemical potential. On the other hand, in the non-topological phase the Liouvillian gap is suppressed by a large chemical potential.
Related papers
- Characterizing dynamical behaviors in topological open systems with boundary dissipations [5.140857534261145]
We investigate the dynamics of the Su-Schrieffer-Heeger model with boundary dissipations described by Lindblad master equations.
By examining the long-time damping dynamics, we uncover a dynamical duality phenomenon between the weak and strong dissipation region.
Within the topologically non-trivial region, we identify the existence of boundary-localized dark states in the thermodynamical limit.
arXiv Detail & Related papers (2025-03-01T06:01:06Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Anomalous hydrodynamics in a class of scarred frustration-free
Hamiltonians [0.0]
We study the interplay between scarring and weak fragmentation in a class of one-dimensional spin-$1$ frustration-free projector Hamiltonians, known as deformed Motzkin chain.
We show that at high energies the particular form of the projectors causes the emergence of disjoint Krylov subspaces for open boundary conditions.
arXiv Detail & Related papers (2021-07-28T19:43:01Z) - Higher-order topological quantum paramagnets [0.0]
Quantum paramagnets are strongly-correlated phases of matter where competing interactions frustrate magnetic order down to zero temperature.
In certain cases, quantum fluctuations induce instead topological order, supporting, in particular, fractionalized quasi-particle excitations.
We show how magnetic frustration can also give rise to higher-order topological properties.
arXiv Detail & Related papers (2021-07-21T14:47:32Z) - Quasi-Locality Bounds for Quantum Lattice Systems. Part II.
Perturbations of Frustration-Free Spin Models with Gapped Ground States [0.0]
We study the stability with respect to a broad class of perturbations of gapped ground state phases of quantum spin systems.
Under a condition of Local Topological Quantum Order, the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential.
arXiv Detail & Related papers (2020-10-29T03:24:19Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Localization of Rung Pairs in Hard-core Bose-Hubbard Ladder [13.46516066673]
We study the rung-pair localization of the Bose-Hubbard ladder model without quenched disorder.
In the hard-core limit, there exists a rung-pair localization both at the edges and in the bulk.
Our results reveal another interesting type of disorder-free localization related to a zero-energy flat band.
arXiv Detail & Related papers (2020-05-18T08:40:40Z) - Probabilistic Hysteresis in an Isolated Quantum System: The Microscopic
Onset of Irreversibility from a Quantum Perspective [0.0]
We focus on the full quantum mechanical description of the integrable system.
For a slow but finite sweep rate we find a broad regime where the quantum results agree with the semiclassical results.
For a single initial energy eigenstate we find in contrast that the backward sweep reveals strong quantum effects even for very large particle numbers.
arXiv Detail & Related papers (2020-03-26T13:26:22Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.