Self-supervised Video Object Segmentation with Distillation Learning of Deformable Attention
- URL: http://arxiv.org/abs/2401.13937v2
- Date: Mon, 18 Mar 2024 05:45:07 GMT
- Title: Self-supervised Video Object Segmentation with Distillation Learning of Deformable Attention
- Authors: Quang-Trung Truong, Duc Thanh Nguyen, Binh-Son Hua, Sai-Kit Yeung,
- Abstract summary: Video object segmentation is a fundamental research problem in computer vision.
We propose a new method for self-supervised video object segmentation based on distillation learning of deformable attention.
- Score: 29.62044843067169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video object segmentation is a fundamental research problem in computer vision. Recent techniques have often applied attention mechanism to object representation learning from video sequences. However, due to temporal changes in the video data, attention maps may not well align with the objects of interest across video frames, causing accumulated errors in long-term video processing. In addition, existing techniques have utilised complex architectures, requiring highly computational complexity and hence limiting the ability to integrate video object segmentation into low-powered devices. To address these issues, we propose a new method for self-supervised video object segmentation based on distillation learning of deformable attention. Specifically, we devise a lightweight architecture for video object segmentation that is effectively adapted to temporal changes. This is enabled by deformable attention mechanism, where the keys and values capturing the memory of a video sequence in the attention module have flexible locations updated across frames. The learnt object representations are thus adaptive to both the spatial and temporal dimensions. We train the proposed architecture in a self-supervised fashion through a new knowledge distillation paradigm where deformable attention maps are integrated into the distillation loss. We qualitatively and quantitatively evaluate our method and compare it with existing methods on benchmark datasets including DAVIS 2016/2017 and YouTube-VOS 2018/2019. Experimental results verify the superiority of our method via its achieved state-of-the-art performance and optimal memory usage.
Related papers
- Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
Video segmentation aims at partitioning video sequences into meaningful segments based on objects or regions of interest within frames.
Current video segmentation models are often derived from image segmentation techniques, which struggle to cope with small-scale or class-imbalanced video datasets.
We propose a training strategy Masked Video Consistency, which enhances spatial and temporal feature aggregation.
arXiv Detail & Related papers (2024-08-20T08:08:32Z) - Rethinking Image-to-Video Adaptation: An Object-centric Perspective [61.833533295978484]
We propose a novel and efficient image-to-video adaptation strategy from the object-centric perspective.
Inspired by human perception, we integrate a proxy task of object discovery into image-to-video transfer learning.
arXiv Detail & Related papers (2024-07-09T13:58:10Z) - Spatial-Temporal Multi-level Association for Video Object Segmentation [89.32226483171047]
This paper proposes spatial-temporal multi-level association, which jointly associates reference frame, test frame, and object features.
Specifically, we construct a spatial-temporal multi-level feature association module to learn better target-aware features.
arXiv Detail & Related papers (2024-04-09T12:44:34Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - TAM-VT: Transformation-Aware Multi-scale Video Transformer for Segmentation and Tracking [33.75267864844047]
Video Object (VOS) has emerged as an increasingly important problem with availability of larger datasets and more complex and realistic settings.
We propose a novel, clip-based DETR-style encoder-decoder architecture, which focuses on systematically analyzing and addressing aforementioned challenges.
Specifically, we propose a novel transformation-aware loss that focuses learning on portions of the video where an object undergoes significant deformations.
arXiv Detail & Related papers (2023-12-13T21:02:03Z) - Patch-based Object-centric Transformers for Efficient Video Generation [71.55412580325743]
We present Patch-based Object-centric Video Transformer (POVT), a novel region-based video generation architecture.
We build upon prior work in video prediction via an autoregressive transformer over the discrete latent space of compressed videos.
Due to better compressibility of object-centric representations, we can improve training efficiency by allowing the model to only access object information for longer horizon temporal information.
arXiv Detail & Related papers (2022-06-08T16:29:59Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Coherent Loss: A Generic Framework for Stable Video Segmentation [103.78087255807482]
We investigate how a jittering artifact degrades the visual quality of video segmentation results.
We propose a Coherent Loss with a generic framework to enhance the performance of a neural network against jittering artifacts.
arXiv Detail & Related papers (2020-10-25T10:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.