Vanishing-Point-Guided Video Semantic Segmentation of Driving Scenes
- URL: http://arxiv.org/abs/2401.15261v2
- Date: Fri, 26 Apr 2024 03:12:35 GMT
- Title: Vanishing-Point-Guided Video Semantic Segmentation of Driving Scenes
- Authors: Diandian Guo, Deng-Ping Fan, Tongyu Lu, Christos Sakaridis, Luc Van Gool,
- Abstract summary: We are the first to harness vanishing point (VP) priors for more effective segmentation.
Our novel, efficient network for VSS, named VPSeg, incorporates two modules that utilize exactly this pair of static and dynamic VP priors.
- Score: 70.08318779492944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The estimation of implicit cross-frame correspondences and the high computational cost have long been major challenges in video semantic segmentation (VSS) for driving scenes. Prior works utilize keyframes, feature propagation, or cross-frame attention to address these issues. By contrast, we are the first to harness vanishing point (VP) priors for more effective segmentation. Intuitively, objects near VPs (i.e., away from the vehicle) are less discernible. Moreover, they tend to move radially away from the VP over time in the usual case of a forward-facing camera, a straight road, and linear forward motion of the vehicle. Our novel, efficient network for VSS, named VPSeg, incorporates two modules that utilize exactly this pair of static and dynamic VP priors: sparse-to-dense feature mining (DenseVP) and VP-guided motion fusion (MotionVP). MotionVP employs VP-guided motion estimation to establish explicit correspondences across frames and help attend to the most relevant features from neighboring frames, while DenseVP enhances weak dynamic features in distant regions around VPs. These modules operate within a context-detail framework, which separates contextual features from high-resolution local features at different input resolutions to reduce computational costs. Contextual and local features are integrated through contextualized motion attention (CMA) for the final prediction. Extensive experiments on two popular driving segmentation benchmarks, Cityscapes and ACDC, demonstrate that VPSeg outperforms previous SOTA methods, with only modest computational overhead.
Related papers
- MCDS-VSS: Moving Camera Dynamic Scene Video Semantic Segmentation by Filtering with Self-Supervised Geometry and Motion [17.50161162624179]
Self-driving cars rely on reliable semantic environment perception for decision making.
We propose MCDS-VSS, a structured filter model that learns in a self-supervised manner to estimate scene geometry and ego-motion of the camera.
Our model parses automotive scenes into multiple interpretable representations such as scene geometry, ego-motion, and object motion.
arXiv Detail & Related papers (2024-05-30T10:33:14Z) - Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation [76.68301884987348]
We propose a simple yet effective approach for self-supervised video object segmentation (VOS)
Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust-temporal segmentation correspondences in videos.
Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and excels in complex real-world multi-object video segmentation tasks.
arXiv Detail & Related papers (2023-11-29T18:47:17Z) - Co-attention Propagation Network for Zero-Shot Video Object Segmentation [91.71692262860323]
Zero-shot object segmentation (ZS-VOS) aims to segment objects in a video sequence without prior knowledge of these objects.
Existing ZS-VOS methods often struggle to distinguish between foreground and background or to keep track of the foreground in complex scenarios.
We propose an encoder-decoder-based hierarchical co-attention propagation network (HCPN) capable of tracking and segmenting objects.
arXiv Detail & Related papers (2023-04-08T04:45:48Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
We present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view.
Our model runs at 25 FPS on a single GPU, which is efficient and applicable for real-time panorama HD map reconstruction.
arXiv Detail & Related papers (2022-11-15T13:52:41Z) - CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse
Transformers [36.838065731893735]
CoBEVT is the first generic multi-agent perception framework that can cooperatively generate BEV map predictions.
CoBEVT achieves state-of-the-art performance for cooperative BEV semantic segmentation.
arXiv Detail & Related papers (2022-07-05T17:59:28Z) - NEAT: Neural Attention Fields for End-to-End Autonomous Driving [59.60483620730437]
We present NEural ATtention fields (NEAT), a novel representation that enables efficient reasoning for imitation learning models.
NEAT is a continuous function which maps locations in Bird's Eye View (BEV) scene coordinates to waypoints and semantics.
In a new evaluation setting involving adverse environmental conditions and challenging scenarios, NEAT outperforms several strong baselines and achieves driving scores on par with the privileged CARLA expert.
arXiv Detail & Related papers (2021-09-09T17:55:28Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet) is a novel framework for video object segmentation (VOS)
Our FSNet performs the crossmodal feature-passing (i.e., transmission and receiving) simultaneously before fusion decoding stage.
We show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.
arXiv Detail & Related papers (2021-08-06T14:50:50Z) - SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation [24.884078497381633]
We introduce a Transformer-based approach to video object segmentation (VOS)
Our attention-based approach allows a model to learn to attend over a history features of multiple frames.
Our method achieves competitive results on YouTube-VOS and DAVIS 2017 with improved scalability and robustness compared with the state of the art.
arXiv Detail & Related papers (2021-01-21T20:06:12Z) - D-VPnet: A Network for Real-time Dominant Vanishing Point Detection in
Natural Scenes [3.8170259685864165]
Vanishing points (VPs) provide useful clues for mapping objects from 2D photos to 3D space.
We present a new convolutional neural network (CNN) to detect dominant VPs in natural scenes.
arXiv Detail & Related papers (2020-06-09T17:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.