A Decision Theoretic Framework for Measuring AI Reliance
- URL: http://arxiv.org/abs/2401.15356v4
- Date: Sun, 12 May 2024 19:33:49 GMT
- Title: A Decision Theoretic Framework for Measuring AI Reliance
- Authors: Ziyang Guo, Yifan Wu, Jason Hartline, Jessica Hullman,
- Abstract summary: Humans frequently make decisions with the aid of artificially intelligent (AI) systems.
Researchers have identified ensuring that a human has appropriate reliance on an AI as a critical component of achieving complementary performance.
We propose a formal definition of reliance, based on statistical decision theory, which separates the concepts of reliance as the probability the decision-maker follows the AI's recommendation.
- Score: 23.353778024330165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans frequently make decisions with the aid of artificially intelligent (AI) systems. A common pattern is for the AI to recommend an action to the human who retains control over the final decision. Researchers have identified ensuring that a human has appropriate reliance on an AI as a critical component of achieving complementary performance. We argue that the current definition of appropriate reliance used in such research lacks formal statistical grounding and can lead to contradictions. We propose a formal definition of reliance, based on statistical decision theory, which separates the concepts of reliance as the probability the decision-maker follows the AI's recommendation from challenges a human may face in differentiating the signals and forming accurate beliefs about the situation. Our definition gives rise to a framework that can be used to guide the design and interpretation of studies on human-AI complementarity and reliance. Using recent AI-advised decision making studies from literature, we demonstrate how our framework can be used to separate the loss due to mis-reliance from the loss due to not accurately differentiating the signals. We evaluate these losses by comparing to a baseline and a benchmark for complementary performance defined by the expected payoff achieved by a rational decision-maker facing the same decision task as the behavioral decision-makers.
Related papers
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies [0.43981305860983716]
We show how to compare the performance of three alternative decision-making systems--human-alone, human-with-AI, and AI-alone.
We find that the risk assessment recommendations do not improve the classification accuracy of a judge's decision to impose cash bail.
arXiv Detail & Related papers (2024-03-18T01:04:52Z) - Online Decision Mediation [72.80902932543474]
Consider learning a decision support assistant to serve as an intermediary between (oracle) expert behavior and (imperfect) human behavior.
In clinical diagnosis, fully-autonomous machine behavior is often beyond ethical affordances.
arXiv Detail & Related papers (2023-10-28T05:59:43Z) - In Search of Verifiability: Explanations Rarely Enable Complementary
Performance in AI-Advised Decision Making [25.18203172421461]
We argue explanations are only useful to the extent that they allow a human decision maker to verify the correctness of an AI's prediction.
We also compare the objective of complementary performance with that of appropriate reliance, decomposing the latter into the notions of outcome-graded and strategy-graded reliance.
arXiv Detail & Related papers (2023-05-12T18:28:04Z) - AI Reliance and Decision Quality: Fundamentals, Interdependence, and the Effects of Interventions [6.356355538824237]
We argue that reliance and decision quality are often inappropriately conflated in the current literature on AI-assisted decision-making.
Our research highlights the importance of distinguishing between reliance behavior and decision quality in AI-assisted decision-making.
arXiv Detail & Related papers (2023-04-18T08:08:05Z) - Human-AI Collaboration in Decision-Making: Beyond Learning to Defer [4.874780144224057]
Human-AI collaboration (HAIC) in decision-making aims to create synergistic teaming between humans and AI systems.
Learning to Defer (L2D) has been presented as a promising framework to determine who among humans and AI should take which decisions.
L2D entails several often unfeasible requirements, such as availability of predictions from humans for every instance or ground-truth labels independent from said decision-makers.
arXiv Detail & Related papers (2022-06-27T11:40:55Z) - Deciding Fast and Slow: The Role of Cognitive Biases in AI-assisted
Decision-making [46.625616262738404]
We use knowledge from the field of cognitive science to account for cognitive biases in the human-AI collaborative decision-making setting.
We focus specifically on anchoring bias, a bias commonly encountered in human-AI collaboration.
arXiv Detail & Related papers (2020-10-15T22:25:41Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.