Semantic Properties of cosine based bias scores for word embeddings
- URL: http://arxiv.org/abs/2401.15499v1
- Date: Sat, 27 Jan 2024 20:31:10 GMT
- Title: Semantic Properties of cosine based bias scores for word embeddings
- Authors: Sarah Schr\"oder, Alexander Schulz, Fabian Hinder and Barbara Hammer
- Abstract summary: We propose requirements for bias scores to be considered meaningful for quantifying biases.
We analyze cosine based scores from the literature with regard to these requirements.
We underline these findings with experiments to show that the bias scores' limitations have an impact in the application case.
- Score: 52.13994416317707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plenty of works have brought social biases in language models to attention
and proposed methods to detect such biases. As a result, the literature
contains a great deal of different bias tests and scores, each introduced with
the premise to uncover yet more biases that other scores fail to detect. What
severely lacks in the literature, however, are comparative studies that analyse
such bias scores and help researchers to understand the benefits or limitations
of the existing methods. In this work, we aim to close this gap for cosine
based bias scores. By building on a geometric definition of bias, we propose
requirements for bias scores to be considered meaningful for quantifying
biases. Furthermore, we formally analyze cosine based scores from the
literature with regard to these requirements. We underline these findings with
experiments to show that the bias scores' limitations have an impact in the
application case.
Related papers
- Bias in Language Models: Beyond Trick Tests and Toward RUTEd Evaluation [55.66090768926881]
We study the correspondence between decontextualized "trick tests" and evaluations that are more grounded in Realistic Use and Tangible Effects.
We compare three de-contextualized evaluations adapted from the current literature to three analogous RUTEd evaluations applied to long-form content generation.
We found no correspondence between trick tests and RUTEd evaluations.
arXiv Detail & Related papers (2024-02-20T01:49:15Z) - This Prompt is Measuring <MASK>: Evaluating Bias Evaluation in Language
Models [12.214260053244871]
We analyse the body of work that uses prompts and templates to assess bias in language models.
We draw on a measurement modelling framework to create a taxonomy of attributes that capture what a bias test aims to measure.
Our analysis illuminates the scope of possible bias types the field is able to measure, and reveals types that are as yet under-researched.
arXiv Detail & Related papers (2023-05-22T06:28:48Z) - Mind Your Bias: A Critical Review of Bias Detection Methods for
Contextual Language Models [2.170169149901781]
We conduct a rigorous analysis and comparison of bias detection methods for contextual language models.
Our results show that minor design and implementation decisions (or errors) have a substantial and often significant impact on the derived bias scores.
arXiv Detail & Related papers (2022-11-15T19:27:54Z) - The Tail Wagging the Dog: Dataset Construction Biases of Social Bias
Benchmarks [75.58692290694452]
We compare social biases with non-social biases stemming from choices made during dataset construction that might not even be discernible to the human eye.
We observe that these shallow modifications have a surprising effect on the resulting degree of bias across various models.
arXiv Detail & Related papers (2022-10-18T17:58:39Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
We introduce SAME, a novel bias score for semantic bias in embeddings.
We show that SAME is capable of measuring semantic bias and identify potential causes for social bias in downstream tasks.
arXiv Detail & Related papers (2022-03-28T09:28:13Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
We propose an information-theoretic bias measurement technique through a causal interpretation of spurious correlation.
We present a novel debiasing framework against the algorithmic bias, which incorporates a bias regularization loss.
The proposed bias measurement and debiasing approaches are validated in diverse realistic scenarios.
arXiv Detail & Related papers (2022-01-10T01:19:31Z) - Measuring Fairness with Biased Rulers: A Survey on Quantifying Biases in
Pretrained Language Models [2.567384209291337]
An increasing awareness of biased patterns in natural language processing resources has motivated many metrics to quantify bias' and fairness'
We survey the existing literature on fairness metrics for pretrained language models and experimentally evaluate compatibility.
We find that many metrics are not compatible and highly depend on (i) templates, (ii) attribute and target seeds and (iii) the choice of embeddings.
arXiv Detail & Related papers (2021-12-14T15:04:56Z) - Evaluating Metrics for Bias in Word Embeddings [44.14639209617701]
We formalize a bias definition based on the ideas from previous works and derive conditions for bias metrics.
We propose a new metric, SAME, to address the shortcomings of existing metrics and mathematically prove that SAME behaves appropriately.
arXiv Detail & Related papers (2021-11-15T16:07:15Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.