Ensemble-Based Annealed Importance Sampling
- URL: http://arxiv.org/abs/2401.15645v2
- Date: Wed, 06 Nov 2024 11:31:00 GMT
- Title: Ensemble-Based Annealed Importance Sampling
- Authors: Haoxuan Chen, Lexing Ying,
- Abstract summary: We propose an ensemble-based version of Annealed Importance Sampling (AIS)
We take advantage of the interaction within the ensemble to encourage the exploration of undiscovered modes.
We discuss how the proposed algorithm can be implemented and derive a partial differential equation governing the evolution of the ensemble.
- Score: 12.59962335240209
- License:
- Abstract: Sampling from a multimodal distribution is a fundamental and challenging problem in computational science and statistics. Among various approaches proposed for this task, one popular method is Annealed Importance Sampling (AIS). In this paper, we propose an ensemble-based version of AIS by combining it with population-based Monte Carlo methods to improve its efficiency. By keeping track of an ensemble instead of a single particle along some continuation path between the starting distribution and the target distribution, we take advantage of the interaction within the ensemble to encourage the exploration of undiscovered modes. Specifically, our main idea is to utilize either the snooker algorithm or the genetic algorithm used in Evolutionary Monte Carlo. We discuss how the proposed algorithm can be implemented and derive a partial differential equation governing the evolution of the ensemble under the continuous time and mean-field limit. We also test the efficiency of the proposed algorithm on various continuous and discrete distributions.
Related papers
- Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Diverse Projection Ensembles for Distributional Reinforcement Learning [6.754994171490016]
This work studies the combination of several different projections and representations in a distributional ensemble.
We derive an algorithm that uses ensemble disagreement, measured by the average $1$-Wasserstein distance, as a bonus for deep exploration.
arXiv Detail & Related papers (2023-06-12T13:59:48Z) - Efficient Informed Proposals for Discrete Distributions via Newton's
Series Approximation [13.349005662077403]
We develop a gradient-like proposal for any discrete distribution without a strong requirement.
Our method efficiently approximates the discrete likelihood ratio via Newton's series expansion.
We prove that our method has a guaranteed convergence rate with or without the Metropolis-Hastings step.
arXiv Detail & Related papers (2023-02-27T16:28:23Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z) - A General Method for Robust Learning from Batches [56.59844655107251]
We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains.
We derive the first robust computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
arXiv Detail & Related papers (2020-02-25T18:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.