LCV2: An Efficient Pretraining-Free Framework for Grounded Visual Question Answering
- URL: http://arxiv.org/abs/2401.15842v2
- Date: Sat, 23 Mar 2024 02:46:54 GMT
- Title: LCV2: An Efficient Pretraining-Free Framework for Grounded Visual Question Answering
- Authors: Yuhan Chen, Lumei Su, Lihua Chen, Zhiwei Lin,
- Abstract summary: The LCV2 modular method is proposed for the Grounded Visual Question Answering task in the vision-language multimodal domain.
This approach relies on a frozen large language model (LLM) as intermediate mediator between the off-the-shelf VQA model and the off-the-shelf visual grounding (VG) model.
This framework can be deployed for VQA Grounding tasks under low computational resources.
- Score: 6.263815658578159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the LCV2 modular method is proposed for the Grounded Visual Question Answering task in the vision-language multimodal domain. This approach relies on a frozen large language model (LLM) as intermediate mediator between the off-the-shelf VQA model and the off-the-shelf visual grounding (VG) model, where the LLM transforms and conveys textual information between the two modules based on a designed prompt. LCV2 establish an integrated plug-and-play framework without the need for any pre-training process. This framework can be deployed for VQA Grounding tasks under low computational resources. The modularized model within the framework allows application with various state-of-the-art pre-trained models, exhibiting significant potential to be advance with the times. Experimental implementations were conducted under constrained computational and memory resources, evaluating the proposed method's performance on benchmark datasets including GQA, CLEVR, and VizWiz-VQA-Grounding. Comparative analyses with baseline methods demonstrate the robust competitiveness of LCV2.
Related papers
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
We present the Modality Integration Rate (MIR), an effective, robust, and generalized metric to indicate the multi-modal pre-training quality of Large Vision Language Models (LVLMs)
MIR is indicative about training data selection, training strategy schedule, and model architecture design to get better pre-training results.
arXiv Detail & Related papers (2024-10-09T17:59:04Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We build universal embedding models capable of handling a wide range of downstream tasks.
Our contributions are twofold: (1) MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. classification, visual question answering, multimodal retrieval, and visual grounding) and 36 datasets, including 20 training and 16 evaluation datasets, and (2) VLM2Vec (Vision-Language Model -> Vector), a contrastive training framework that converts any state-of-the-art vision-language model into an embedding model via training on MMEB.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - Conformal Trajectory Prediction with Multi-View Data Integration in Cooperative Driving [4.628774934971078]
Current research on trajectory prediction primarily relies on data collected by onboard sensors of an ego vehicle.
We introduce V2INet, a novel trajectory prediction framework designed to model multi-view data by extending existing single-view models.
Our results demonstrate superior performance in terms of Final Displacement Error (FDE) and Miss Rate (MR) using a single GPU.
arXiv Detail & Related papers (2024-08-01T08:32:03Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Transfer Learning in Multi-Agent Reinforcement Learning with Double
Q-Networks for Distributed Resource Sharing in V2X Communication [24.442174952832108]
This paper addresses the problem of decentralized spectrum sharing in vehicle-to-everything (V2X) communication networks.
The aim is to provide resource-efficient coexistence of vehicle-to-infrastructure(V2I) and vehicle-to-vehicle(V2V) links.
arXiv Detail & Related papers (2021-07-13T15:50:10Z) - WenLan: Bridging Vision and Language by Large-Scale Multi-Modal
Pre-Training [71.37731379031487]
We propose a two-tower pre-training model called BriVL within the cross-modal contrastive learning framework.
Unlike OpenAI CLIP that adopts a simple contrastive learning method, we devise a more advanced algorithm by adapting the latest method MoCo into the cross-modal scenario.
By building a large queue-based dictionary, our BriVL can incorporate more negative samples in limited GPU resources.
arXiv Detail & Related papers (2021-03-11T09:39:49Z) - Unsupervised Vision-and-Language Pre-training Without Parallel Images
and Captions [92.47566804182338]
We investigate if a strong V&L representation model can be learned through unsupervised pre-training without image-caption corpora.
In particular, we propose to conduct mask-and-predict'' pre-training on text-only and image-only corpora.
We find that such a simple approach performance close to a model pre-trained with aligned data, on four English V&L benchmarks.
arXiv Detail & Related papers (2020-10-24T08:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.