Mean Estimation with User-Level Privacy for Spatio-Temporal IoT Datasets
- URL: http://arxiv.org/abs/2401.15906v7
- Date: Thu, 25 Apr 2024 05:39:37 GMT
- Title: Mean Estimation with User-Level Privacy for Spatio-Temporal IoT Datasets
- Authors: V. Arvind Rameshwar, Anshoo Tandon, Prajjwal Gupta, Aditya Vikram Singh, Novoneel Chakraborty, Abhay Sharma,
- Abstract summary: We develop user-level differentially private algorithms to ensure low estimation errors on real-world datasets.
We test our algorithms on ITMS (Intelligent Traffic Management System) data from an Indian city.
We characterize the best performance of pseudo-user creation-based algorithms on worst-case datasets via a minimax approach.
- Score: 5.34194012533815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the problem of the private release of sample means of speed values from traffic datasets. Our key contribution is the development of user-level differentially private algorithms that incorporate carefully chosen parameter values to ensure low estimation errors on real-world datasets, while ensuring privacy. We test our algorithms on ITMS (Intelligent Traffic Management System) data from an Indian city, where the speeds of different buses are drawn in a potentially non-i.i.d. manner from an unknown distribution, and where the number of speed samples contributed by different buses is potentially different. We then apply our algorithms to large synthetic datasets, generated based on the ITMS data. Here, we provide theoretical justification for the observed performance trends, and also provide recommendations for the choices of algorithm subroutines that result in low estimation errors. Finally, we characterize the best performance of pseudo-user creation-based algorithms on worst-case datasets via a minimax approach; this then gives rise to a novel procedure for the creation of pseudo-users, which optimizes the worst-case total estimation error. The algorithms discussed in the paper are readily applicable to general spatio-temporal IoT datasets for releasing a differentially private mean of a desired value.
Related papers
- AAA: an Adaptive Mechanism for Locally Differential Private Mean Estimation [42.95927712062214]
Local differential privacy (LDP) is a strong privacy standard that has been adopted by popular software systems.
We propose the advanced adaptive additive (AAA) mechanism, which is a distribution-aware approach that addresses the average utility.
We provide rigorous privacy proofs, utility analyses, and extensive experiments comparing AAA with state-of-the-art mechanisms.
arXiv Detail & Related papers (2024-04-02T04:22:07Z) - Benchmarking Private Population Data Release Mechanisms: Synthetic Data vs. TopDown [50.40020716418472]
This study conducts a comparison between the TopDown algorithm and private synthetic data generation to determine how accuracy is affected by query complexity.
Our results show that for in-distribution queries, the TopDown algorithm achieves significantly better privacy-fidelity tradeoffs than any of the synthetic data methods we evaluated.
arXiv Detail & Related papers (2024-01-31T17:38:34Z) - Optimal Locally Private Nonparametric Classification with Public Data [2.631955426232593]
We investigate the problem of public data assisted non-interactive Local Differentially Private (LDP) learning with a focus on non-parametric classification.
Under the posterior drift assumption, we derive the mini-max optimal convergence rate with LDP constraint.
We present a novel approach, the locally differentially private classification tree, which attains the mini-max optimal convergence rate.
arXiv Detail & Related papers (2023-11-19T16:35:01Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Differentially Private Distributed Convex Optimization [0.0]
In distributed optimization, multiple agents cooperate to minimize a global objective function, expressed as a sum of local objectives.
Locally stored data are not shared with other agents, which could limit the practical usage of DO in applications with sensitive data.
We propose a privacy-preserving DO algorithm for constrained convex optimization models.
arXiv Detail & Related papers (2023-02-28T12:07:27Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Debiasing In-Sample Policy Performance for Small-Data, Large-Scale
Optimization [4.554894288663752]
We propose a novel estimator of the out-of-sample performance of a policy in data-driven optimization.
Unlike cross-validation, our approach avoids sacrificing data for a test set.
We prove our estimator performs well in the small-data, largescale regime.
arXiv Detail & Related papers (2021-07-26T19:00:51Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - Evaluating representations by the complexity of learning low-loss
predictors [55.94170724668857]
We consider the problem of evaluating representations of data for use in solving a downstream task.
We propose to measure the quality of a representation by the complexity of learning a predictor on top of the representation that achieves low loss on a task of interest.
arXiv Detail & Related papers (2020-09-15T22:06:58Z) - Differentially Private Simple Linear Regression [2.614403183902121]
We study algorithms for simple linear regression that satisfy differential privacy.
We consider the design of differentially private algorithms for simple linear regression for small datasets.
We study the performance of a spectrum of algorithms we adapt to the setting.
arXiv Detail & Related papers (2020-07-10T04:28:43Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.