Augmenting Replay in World Models for Continual Reinforcement Learning
- URL: http://arxiv.org/abs/2401.16650v3
- Date: Tue, 16 Jul 2024 07:33:52 GMT
- Title: Augmenting Replay in World Models for Continual Reinforcement Learning
- Authors: Luke Yang, Levin Kuhlmann, Gideon Kowadlo,
- Abstract summary: Continual RL requires an agent to learn new tasks without forgetting previous ones, while improving on both past and future tasks.
The most common approaches use model-free algorithms and replay buffers to mitigate catastrophic forgetting.
We introduce WMAR (World Models with Augmented Replay), a model-based RL algorithm with a memory-efficient replay buffer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual RL requires an agent to learn new tasks without forgetting previous ones, while improving on both past and future tasks. The most common approaches use model-free algorithms and replay buffers can help to mitigate catastrophic forgetting, but often struggle with scalability due to large memory requirements. Biologically inspired replay suggests replay to a world model, aligning with model-based RL; as opposed to the common setting of replay in model-free algorithms. Model-based RL offers benefits for continual RL by leveraging knowledge of the environment, independent of policy. We introduce WMAR (World Models with Augmented Replay), a model-based RL algorithm with a memory-efficient distribution-matching replay buffer. WMAR extends the well known DreamerV3 algorithm, which employs a simple FIFO buffer and was not tested in continual RL. We evaluated WMAR and DreamerV3, with the same-size replay buffers. They were tested on two scenarios: tasks with shared structure using OpenAI Procgen and tasks without shared structure using the Atari benchmark. WMAR demonstrated favourable properties for continual RL considering metrics for forgetting as well as skill transfer on past and future tasks. Compared to DreamerV3, WMAR showed slight benefits in tasks with shared structure and substantially better forgetting characteristics on tasks without shared structure. Our results suggest that model-based RL with a memory-efficient replay buffer can be an effective approach to continual RL, justifying further research.
Related papers
- Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining [49.730897226510095]
We introduce JOWA: Jointly-Reinforced World-Action model, an offline model-based RL agent pretrained on Atari games with 6 billion tokens data.
Our largest agent, with 150 million parameters, 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange.
arXiv Detail & Related papers (2024-10-01T10:25:03Z) - Reflect-RL: Two-Player Online RL Fine-Tuning for LMs [38.5495318990769]
We propose Reflect-RL, a system to fine-tune language models (LMs) using online reinforcement learning (RL) and supervised fine-tuning (SFT)
Test results indicate GPT-2 XL 1.56B fine-tuned with Reflect-RL outperforms larger open-source LMs, such as Mistral 7B.
arXiv Detail & Related papers (2024-02-20T01:04:21Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
Reinforcement learning (RL) has been widely used in training large language models (LLMs)
We propose a new RL method named RLMEC that incorporates a generative model as the reward model.
Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process.
arXiv Detail & Related papers (2024-01-11T17:58:41Z) - Continual Referring Expression Comprehension via Dual Modular
Memorization [133.46886428655426]
Referring Expression (REC) aims to localize an image region of a given object described by a natural-language expression.
Existing REC algorithms make a strong assumption that training data feeding into a model are given upfront, which degrades its practicality for real-world scenarios.
In this paper, we propose Continual Referring Expression (CREC), a new setting for REC, where a model is learning on a stream of incoming tasks.
In order to continuously improve the model on sequential tasks without forgetting prior learned knowledge and without repeatedly re-training from a scratch, we propose an effective baseline method named Dual Modular Memorization
arXiv Detail & Related papers (2023-11-25T02:58:51Z) - Does Zero-Shot Reinforcement Learning Exist? [11.741744003560095]
A zero-shot RL agent is an agent that can solve any RL task instantly with no additional planning or learning.
This marks a shift from the reward-centric RL paradigm towards "controllable" agents.
Strategies for approximate zero-shot RL ave been suggested using successor features (SFs) or forward-backward (FB) representations.
arXiv Detail & Related papers (2022-09-29T16:54:05Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Model-Free Generative Replay for Lifelong Reinforcement Learning:
Application to Starcraft-2 [5.239932780277599]
Generative replay (GR) is a biologically-inspired replay mechanism that augments learning experiences with self-labelled examples.
We present a version of GR for LRL that satisfies two desideratas: (a) Introspective density modelling of the latent representations of policies learned using deep RL, and (b) Model-free end-to-end learning.
arXiv Detail & Related papers (2022-08-09T22:00:28Z) - Recurrent Model-Free RL is a Strong Baseline for Many POMDPs [73.39666827525782]
Many problems in RL, such as meta RL, robust RL, and generalization in RL, can be cast as POMDPs.
In theory, simply augmenting model-free RL with memory, such as recurrent neural networks, provides a general approach to solving all types of POMDPs.
Prior work has found that such recurrent model-free RL methods tend to perform worse than more specialized algorithms that are designed for specific types of POMDPs.
arXiv Detail & Related papers (2021-10-11T07:09:14Z) - Parallel Actors and Learners: A Framework for Generating Scalable RL
Implementations [14.432131909590824]
Reinforcement Learning (RL) has achieved significant success in application domains such as robotics, games, health care and others.
Current implementations exhibit poor performance due to challenges such as irregular memory accesses and synchronization overheads.
We propose a framework for generating scalable reinforcement learning implementations on multicore systems.
arXiv Detail & Related papers (2021-10-03T21:00:53Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.