MESA: Matching Everything by Segmenting Anything
- URL: http://arxiv.org/abs/2401.16741v2
- Date: Mon, 8 Apr 2024 14:42:15 GMT
- Title: MESA: Matching Everything by Segmenting Anything
- Authors: Yesheng Zhang, Xu Zhao,
- Abstract summary: MESA is a novel approach to establish precise area (or region) matches for efficient matching redundancy reduction.
We show that MESA yields substantial precision improvement for multiple point matchers in indoor and outdoor downstream tasks.
- Score: 16.16319526547664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature matching is a crucial task in the field of computer vision, which involves finding correspondences between images. Previous studies achieve remarkable performance using learning-based feature comparison. However, the pervasive presence of matching redundancy between images gives rise to unnecessary and error-prone computations in these methods, imposing limitations on their accuracy. To address this issue, we propose MESA, a novel approach to establish precise area (or region) matches for efficient matching redundancy reduction. MESA first leverages the advanced image understanding capability of SAM, a state-of-the-art foundation model for image segmentation, to obtain image areas with implicit semantic. Then, a multi-relational graph is proposed to model the spatial structure of these areas and construct their scale hierarchy. Based on graphical models derived from the graph, the area matching is reformulated as an energy minimization task and effectively resolved. Extensive experiments demonstrate that MESA yields substantial precision improvement for multiple point matchers in indoor and outdoor downstream tasks, e.g. +13.61% for DKM in indoor pose estimation.
Related papers
- Towards Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling [11.129453244307369]
FG-SBIR aims to minimize the distance between sketches and corresponding images in the embedding space.
We propose an effective approach to narrow the gap between the two domains.
It mainly facilitates unified mutual information sharing both intra- and inter-samples.
arXiv Detail & Related papers (2024-06-17T13:49:12Z) - Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning [50.88504784466931]
Multi-task dense prediction involves semantic segmentation, depth estimation, and surface normal estimation.
Existing solutions typically rely on learning global image representations for global cross-task image matching.
Our proposal involves modeling region-wise representations using Gaussian Distributions.
arXiv Detail & Related papers (2024-03-15T12:41:30Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Adaptive Graph Convolution Module for Salient Object Detection [7.278033100480174]
We propose an adaptive graph convolution module (AGCM) to deal with complex scenes.
Prototype features are extracted from the input image using a learnable region generation layer.
The proposed AGCM dramatically improves the SOD performance both quantitatively and quantitatively.
arXiv Detail & Related papers (2023-03-17T07:07:17Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - BDA-SketRet: Bi-Level Domain Adaptation for Zero-Shot SBIR [52.78253400327191]
BDA-SketRet is a novel framework performing a bi-level domain adaptation for aligning the spatial and semantic features of the visual data pairs.
Experimental results on the extended Sketchy, TU-Berlin, and QuickDraw exhibit sharp improvements over the literature.
arXiv Detail & Related papers (2022-01-17T18:45:55Z) - A Multi-Task Deep Learning Framework for Building Footprint Segmentation [0.0]
We propose a joint optimization scheme for the task of building footprint delineation.
We also introduce two auxiliary tasks; image reconstruction and building footprint boundary segmentation.
In particular, we propose a deep multi-task learning (MTL) based unified fully convolutional framework.
arXiv Detail & Related papers (2021-04-19T15:07:27Z) - DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning [122.51237307910878]
We develop methods for few-shot image classification from a new perspective of optimal matching between image regions.
We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations.
To generate the important weights of elements in the formulation, we design a cross-reference mechanism.
arXiv Detail & Related papers (2020-03-15T08:13:16Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.