Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
Intractable Likelihoods
- URL: http://arxiv.org/abs/2401.16776v1
- Date: Tue, 30 Jan 2024 06:29:41 GMT
- Title: Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
Intractable Likelihoods
- Authors: Xiliang Yang, Yifei Xiong, Zhijian He
- Abstract summary: SNPE techniques are proposed for dealing with simulation-based models with intractable likelihoods.
In this paper, we propose a nested APT method to estimate the involved nested expectation.
Since the nested estimators for the loss function and its gradient are biased, we make use of unbiased multi-level Monte Carlo (MLMC) estimators.
- Score: 0.8287206589886881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential neural posterior estimation (SNPE) techniques have been recently
proposed for dealing with simulation-based models with intractable likelihoods.
They are devoted to learning the posterior from adaptively proposed simulations
using neural network-based conditional density estimators. As a SNPE technique,
the automatic posterior transformation (APT) method proposed by Greenberg et
al. (2019) performs notably and scales to high dimensional data. However, the
APT method bears the computation of an expectation of the logarithm of an
intractable normalizing constant, i.e., a nested expectation. Although atomic
APT was proposed to solve this by discretizing the normalizing constant, it
remains challenging to analyze the convergence of learning. In this paper, we
propose a nested APT method to estimate the involved nested expectation
instead. This facilitates establishing the convergence analysis. Since the
nested estimators for the loss function and its gradient are biased, we make
use of unbiased multi-level Monte Carlo (MLMC) estimators for debiasing. To
further reduce the excessive variance of the unbiased estimators, this paper
also develops some truncated MLMC estimators by taking account of the trade-off
between the bias and the average cost. Numerical experiments for approximating
complex posteriors with multimodal in moderate dimensions are provided.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients [0.8749675983608172]
We present an unbiased method for posterior means based on kinetic Langevin dynamics.
Our proposed estimator is unbiased, attains finite variance, and satisfies a central limit theorem.
Our results demonstrate that in large-scale applications, the unbiased algorithm we present can be 2-3 orders of magnitude more efficient than the gold-standard" randomized Hamiltonian Monte Carlo.
arXiv Detail & Related papers (2023-11-08T21:19:52Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
We introduce a novel combination of Bayesian Models (BMs) and Neural Networks (NNs) for making predictions with a minimum expected risk.
Our approach combines the data efficiency and interpretability of a BM with the speed of a NN.
We achieve risk minimized predictions significantly faster than standard methods with a negligible loss on the testing dataset.
arXiv Detail & Related papers (2021-03-29T15:08:25Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Robust subgaussian estimation with VC-dimension [0.0]
This work proposes a new general way to bound the excess risk for MOM estimators.
The core technique is the use of VC-dimension (instead of Rademacher complexity) to measure the statistical complexity.
arXiv Detail & Related papers (2020-04-24T13:21:09Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Efficient Debiased Evidence Estimation by Multilevel Monte Carlo
Sampling [0.0]
We propose a new optimization algorithm for Bayesian inference based multilevel Monte Carlo (MLMC) methods.
Our numerical results confirm considerable computational savings compared to the conventional estimators.
arXiv Detail & Related papers (2020-01-14T09:14:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.