Robust Kernel Sparse Subspace Clustering
- URL: http://arxiv.org/abs/2401.17035v1
- Date: Tue, 30 Jan 2024 14:12:39 GMT
- Title: Robust Kernel Sparse Subspace Clustering
- Authors: Ivica Kopriva
- Abstract summary: We propose for the first time robust kernel sparse SC (RKSSC) algorithm for data with gross sparse corruption.
The concept, in principle, can be applied to other SC algorithms to achieve robustness to the presence of such type of corruption.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kernel methods are applied to many problems in pattern recognition, including
subspace clustering (SC). That way, nonlinear problems in the input data space
become linear in mapped high-dimensional feature space. Thereby,
computationally tractable nonlinear algorithms are enabled through implicit
mapping by the virtue of kernel trick. However, kernelization of linear
algorithms is possible only if square of the Froebenious norm of the error term
is used in related optimization problem. That, however, implies normal
distribution of the error. That is not appropriate for non-Gaussian errors such
as gross sparse corruptions that are modeled by -norm. Herein, to the best of
our knowledge, we propose for the first time robust kernel sparse SC (RKSSC)
algorithm for data with gross sparse corruptions. The concept, in principle,
can be applied to other SC algorithms to achieve robustness to the presence of
such type of corruption. We validated proposed approach on two well-known
datasets with linear robust SSC algorithm as a baseline model. According to
Wilcoxon test, clustering performance obtained by the RKSSC algorithm is
statistically significantly better than corresponding performance obtained by
the robust SSC algorithm. MATLAB code of proposed RKSSC algorithm is posted on
https://github.com/ikopriva/RKSSC.
Related papers
- Efficient Convex Algorithms for Universal Kernel Learning [46.573275307034336]
An ideal set of kernels should: admit a linear parameterization (for tractability); dense in the set of all kernels (for accuracy)
Previous algorithms for optimization of kernels were limited to classification and relied on computationally complex Semidefinite Programming (SDP) algorithms.
We propose a SVD-QCQPQP algorithm which dramatically reduces the computational complexity as compared with previous SDP-based approaches.
arXiv Detail & Related papers (2023-04-15T04:57:37Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - Learning to Hash Robustly, with Guarantees [79.68057056103014]
In this paper, we design an NNS algorithm for the Hamming space that has worst-case guarantees essentially matching that of theoretical algorithms.
We evaluate the algorithm's ability to optimize for a given dataset both theoretically and practically.
Our algorithm has a 1.8x and 2.1x better recall on the worst-performing queries to the MNIST and ImageNet datasets.
arXiv Detail & Related papers (2021-08-11T20:21:30Z) - Kernel Clustering with Sigmoid-based Regularization for Efficient
Segmentation of Sequential Data [3.8326963933937885]
segmentation aims at partitioning a data sequence into several non-overlapping segments that may have nonlinear and complex structures.
A popular Kernel for optimally solving this problem is dynamic programming (DP), which has quadratic computation and memory requirements.
Although many algorithms have been proposed to approximate the optimal segmentation, they have no guarantee on the quality of their solutions.
arXiv Detail & Related papers (2021-06-22T04:32:21Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Adaptive Explicit Kernel Minkowski Weighted K-means [1.3535770763481905]
The kernel K-means, which extends K-means into the kernel space, is able to capture nonlinear structures and identify arbitrarily shaped clusters.
This paper proposes a method to combine the advantages of the linear and nonlinear approaches by using driven corresponding approximate finite-dimensional feature maps.
arXiv Detail & Related papers (2020-12-04T19:14:09Z) - A New Algorithm for Tessellated Kernel Learning [4.264192013842097]
An ideal set of kernels should: admit a linear parameterization (for tractability); be dense in the set of all kernels (for robustness); be universal (for accuracy)
The recently proposed Tesselated Kernels (TKs) is currently the only known class which meets all three criteria.
By contrast, the 2-step algorithm proposed here scales to 10,000 data points and extends to the regression problem.
arXiv Detail & Related papers (2020-06-13T18:33:31Z) - Learnable Subspace Clustering [76.2352740039615]
We develop a learnable subspace clustering paradigm to efficiently solve the large-scale subspace clustering problem.
The key idea is to learn a parametric function to partition the high-dimensional subspaces into their underlying low-dimensional subspaces.
To the best of our knowledge, this paper is the first work to efficiently cluster millions of data points among the subspace clustering methods.
arXiv Detail & Related papers (2020-04-09T12:53:28Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.