H-SynEx: Using synthetic images and ultra-high resolution ex vivo MRI for hypothalamus subregion segmentation
- URL: http://arxiv.org/abs/2401.17104v2
- Date: Mon, 1 Jul 2024 22:33:32 GMT
- Title: H-SynEx: Using synthetic images and ultra-high resolution ex vivo MRI for hypothalamus subregion segmentation
- Authors: Livia Rodrigues, Martina Bocchetta, Oula Puonti, Douglas Greve, Ana Carolina Londe, Marcondes França, Simone Appenzeller, Juan Eugenio Iglesias, Leticia Rittner,
- Abstract summary: We introduce H-SynEx, a machine learning method for automated segmentation of hypothalamic subregions.
H-SynEx generalizes across different MRI sequences and resolutions without retraining.
Our method was able to discriminate controls versus Alzheimer's Disease patients on FLAIR images with 5mm spacing.
- Score: 1.0486773259892048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The hypothalamus is a small structure located in the center of the brain and is involved in significant functions such as sleeping, temperature, and appetite control. Various neurological disorders are also associated with hypothalamic abnormalities. Automated image analysis of this structure from brain MRI is thus highly desirable to study the hypothalamus in vivo. However, most automated segmentation tools currently available focus exclusively on T1w images. In this study, we introduce H-SynEx, a machine learning method for automated segmentation of hypothalamic subregions that generalizes across different MRI sequences and resolutions without retraining. H-synEx was trained with synthetic images built from label maps derived from ultra-high resolution ex vivo MRI scans, which enables finer-grained manual segmentation when compared with 1mm isometric in vivo images. We validated our method using Dice Coefficient (DSC) and Average Hausdorff distance (AVD) across in vivo images from six different datasets with six different MRI sequences (T1, T2, proton density, quantitative T1, fractional anisotrophy, and FLAIR). Statistical analysis compared hypothalamic subregion volumes in controls, Alzheimer's disease (AD), and behavioral variant frontotemporal dementia (bvFTD) subjects using the Area Under the Receiving Operating Characteristic curve (AUROC) and Wilcoxon rank sum test. Our results show that H-SynEx successfully leverages information from ultra-high resolution scans to segment in vivo from different MRI sequences. Our automated segmentation was able to discriminate controls versus Alzheimer's Disease patients on FLAIR images with 5mm spacing. H-SynEx is openly available at https://github.com/liviamarodrigues/hsynex.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Surface-based parcellation and vertex-wise analysis of ultra high-resolution ex vivo 7 tesla MRI in Alzheimer's disease and related dementias [32.61675068837929]
We present one-of-its-kind dataset of 82 ex vivo T2w whole brain hemispheres MRI at 0.3 mm isotropic resolution spanning Alzheimer's disease and related dementias.
We adapted and developed a fast and easy-to-use automated surface-based pipeline to parcellate, for the first time, ultra high-resolution ex vivo brain tissue at the native subject space resolution using the Desikan-Killiany-Tourville (DKT) brain atlas.
arXiv Detail & Related papers (2024-03-28T15:27:34Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and
adjacent structures on high-resolutional brain MRI [3.869627124798774]
We introduce a novel, fast, and fully automated deep learning method named HypVINN for sub-segmentation of the hypothalamus.
We extensively validate our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to replicate hypothalamic volume effects.
arXiv Detail & Related papers (2023-08-24T12:26:38Z) - Generative AI for Rapid Diffusion MRI with Improved Image Quality,
Reliability and Generalizability [3.6119644566822484]
We employ a Swin UNEt Transformers model, trained on augmented Human Connectome Project data, to perform generalized denoising of dMRI.
We demonstrate super-resolution with artificially downsampled HCP data in normal adult volunteers.
We exceed current state-of-the-art denoising methods in accuracy and test-retest reliability of rapid diffusion tensor imaging requiring only 90 seconds of scan time.
arXiv Detail & Related papers (2023-03-10T03:39:23Z) - A Survey of Feature detection methods for localisation of plain sections
of Axial Brain Magnetic Resonance Imaging [0.0]
Matching MRI brain images between patients or mapping patients' MRI slices to the simulated atlas of a brain is key to the automatic registration of MRI of a brain.
In this work, we have introduced robustness, accuracy and cumulative distance metrics and methodology that allows us to compare different techniques and approaches in matching brain MRI of different patients or matching MRI brain slice to a position in the brain atlas.
arXiv Detail & Related papers (2023-02-08T16:24:09Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and
no Retraining [1.0499611180329802]
Retrospective analysis of brain MRI scans acquired in the clinic has the potential to enable neuroimaging studies with sample sizes much larger than those found in research datasets.
Recent advances in convolutional neural networks (CNNs) and domain randomisation for image segmentation may enable morphometry of clinical MRI at scale.
We show that SynthSeg is generally robust, but frequently falters on scans with low signal-to-noise ratio or poor tissue contrast.
We propose SynthSeg+, a novel method that greatly mitigates these problems using a hierarchy of conditional segmentation and denoising CNNs.
arXiv Detail & Related papers (2022-03-03T19:18:28Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators.
Experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
arXiv Detail & Related papers (2020-06-26T02:50:09Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.