Data-Driven Discovery of PDEs via the Adjoint Method
- URL: http://arxiv.org/abs/2401.17177v3
- Date: Sun, 29 Sep 2024 20:54:27 GMT
- Title: Data-Driven Discovery of PDEs via the Adjoint Method
- Authors: Mohsen Sadr, Tony Tohme, Kamal Youcef-Toumi,
- Abstract summary: We present an adjoint-based method for discovering the underlying governing partial differential equations (PDEs) given data.
We show the efficacy of the proposed approach in identifying the form of the PDE.
We also compare its performance with the famous PDE Functional Identification of Dynamics method known as PDE-FIND.
- Score: 4.014524824655106
- License:
- Abstract: In this work, we present an adjoint-based method for discovering the underlying governing partial differential equations (PDEs) given data. The idea is to consider a parameterized PDE in a general form and formulate a PDE-constrained optimization problem aimed at minimizing the error of the PDE solution from data. Using variational calculus, we obtain an evolution equation for the Lagrange multipliers (adjoint equations) allowing us to compute the gradient of the objective function with respect to the parameters of PDEs given data in a straightforward manner. In particular, we consider a family of parameterized PDEs encompassing linear, nonlinear, and spatial derivative candidate terms, and elegantly derive the corresponding adjoint equations. We show the efficacy of the proposed approach in identifying the form of the PDE up to machine accuracy, enabling the accurate discovery of PDEs from data. We also compare its performance with the famous PDE Functional Identification of Nonlinear Dynamics method known as PDE-FIND (Rudy et al., 2017), on both smooth and noisy data sets. Even though the proposed adjoint method relies on forward/backward solvers, it outperforms PDE-FIND for large data sets thanks to the analytic expressions for gradients of the cost function with respect to each PDE parameter.
Related papers
- Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
We propose a finite-dimensional control-based method to approximate solution operators for evolutional partial differential equations.
Results are presented for several high-dimensional PDEs, including real-world applications to solving Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-18T21:45:09Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Elucidating the solution space of extended reverse-time SDE for
diffusion models [54.23536653351234]
Diffusion models (DMs) demonstrate potent image generation capabilities in various generative modeling tasks.
Their primary limitation lies in slow sampling speed, requiring hundreds or thousands of sequential function evaluations to generate high-quality images.
We formulate the sampling process as an extended reverse-time SDE, unifying prior explorations into ODEs and SDEs.
We devise fast and training-free samplers, ER-SDE-rs, achieving state-of-the-art performance across all samplers.
arXiv Detail & Related papers (2023-09-12T12:27:17Z) - Weak-PDE-LEARN: A Weak Form Based Approach to Discovering PDEs From
Noisy, Limited Data [0.0]
We introduce Weak-PDE-LEARN, a discovery algorithm that can identify non-linear PDEs from noisy, limited measurements of their solutions.
We demonstrate the efficacy of Weak-PDE-LEARN by learning several benchmark PDEs.
arXiv Detail & Related papers (2023-09-09T06:45:15Z) - Neural Control of Parametric Solutions for High-dimensional Evolution
PDEs [6.649496716171139]
We develop a novel computational framework to approximate solution operators of evolution partial differential equations (PDEs)
We propose to approximate the solution operator of the PDE by learning the control vector field in the parameter space.
This allows for substantially reduced computational cost to solve the evolution PDE with arbitrary initial conditions.
arXiv Detail & Related papers (2023-01-31T19:26:25Z) - Parameter Inference based on Gaussian Processes Informed by Nonlinear
Partial Differential Equations [6.230751621285322]
Partial differential equations (PDEs) are widely used for the description of physical and engineering phenomena.
Some key parameters involved in PDEs, which represent certain physical properties with important scientific interpretations, are difficult or even impossible to measure directly.
We propose a novel method for the inference of unknown parameters in PDEs, called the PDE-Informed Gaussian Process (PIGP) based parameter inference method.
arXiv Detail & Related papers (2022-12-22T17:14:51Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Error bounds for PDE-regularized learning [0.6445605125467573]
We consider the regularization of a supervised learning problem by partial differential equations (PDEs)
We derive error bounds for the obtained approximation in terms of a PDE error term and a data error term.
arXiv Detail & Related papers (2020-03-14T00:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.