On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm
- URL: http://arxiv.org/abs/2402.00389v3
- Date: Mon, 15 Apr 2024 13:07:28 GMT
- Title: On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm
- Authors: Huan Li, Zhouchen Lin,
- Abstract summary: This paper considers the RMSProp and its momentum extension and establishes the convergence rate of $frac1Tsum_k=1T.
Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$.
Our convergence rate can be considered to be analogous to the $frac1Tsum_k=1T.
- Score: 59.65871549878937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although adaptive gradient methods have been extensively used in deep learning, their convergence rates proved in the literature are all slower than that of SGD, particularly with respect to their dependence on the dimension. This paper considers the classical RMSProp and its momentum extension and establishes the convergence rate of $\frac{1}{T}\sum_{k=1}^T E\left[\|\nabla f(x^k)\|_1\right]\leq O(\frac{\sqrt{d}C}{T^{1/4}})$ measured by $\ell_1$ norm without the bounded gradient assumption, where $d$ is the dimension of the optimization variable, $T$ is the iteration number, and $C$ is a constant identical to that appeared in the optimal convergence rate of SGD. Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$. Since $\|x\|_2\ll\|x\|_1\leq\sqrt{d}\|x\|_2$ for problems with extremely large $d$, our convergence rate can be considered to be analogous to the $\frac{1}{T}\sum_{k=1}^T E\left[\|\nabla f(x^k)\|_2\right]\leq O(\frac{C}{T^{1/4}})$ rate of SGD in the ideal case of $\|\nabla f(x)\|_1=\varTheta(\sqrt{d}\|\nabla f(x)\|_2)$.
Related papers
- Improved convergence rate of kNN graph Laplacians [11.93971616098517]
General class of $k$NN graph where the graph affinity is $W_ij = epsilon-d/2 .
We prove the point-wise convergence of the $k$NN graph Laplacian to the limiting manifold operator.
arXiv Detail & Related papers (2024-10-30T17:01:00Z) - Measuring quantum relative entropy with finite-size effect [53.64687146666141]
We study the estimation of relative entropy $D(rho|sigma)$ when $sigma$ is known.
Our estimator attains the Cram'er-Rao type bound when the dimension $d$ is fixed.
arXiv Detail & Related papers (2024-06-25T06:07:20Z) - Convergence of a Normal Map-based Prox-SGD Method under the KL
Inequality [0.0]
We present a novel map-based algorithm ($mathsfnorMtext-mathsfSGD$) for $symbol$k$ convergence problems.
arXiv Detail & Related papers (2023-05-10T01:12:11Z) - Sharper Convergence Guarantees for Asynchronous SGD for Distributed and
Federated Learning [77.22019100456595]
We show a training algorithm for distributed computation workers with varying communication frequency.
In this work, we obtain a tighter convergence rate of $mathcalO!!!(sigma2-2_avg!! .
We also show that the heterogeneity term in rate is affected by the average delay within each worker.
arXiv Detail & Related papers (2022-06-16T17:10:57Z) - The ODE Method for Asymptotic Statistics in Stochastic Approximation and Reinforcement Learning [3.8098187557917464]
The paper concerns the $d$-dimensional recursion approximation, $$theta_n+1= theta_n + alpha_n + 1 f(theta_n, Phi_n+1) $$ where $ Phi_n $ is a process on a general state space.
The main results are established under additional conditions on the mean flow and a version of the Donsker-Varadhan Lyapunov drift condition known as (DV3): (i) An appropriate Lyapunov
arXiv Detail & Related papers (2021-10-27T13:38:25Z) - Convergence Rate of the (1+1)-Evolution Strategy with Success-Based
Step-Size Adaptation on Convex Quadratic Functions [20.666734673282498]
The (1+1)-evolution strategy (ES) with success-based step-size adaptation is analyzed on a general convex quadratic function.
The convergence rate of the (1+1)-ES is derived explicitly and rigorously on a general convex quadratic function.
arXiv Detail & Related papers (2021-03-02T09:03:44Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Accelerating Optimization and Reinforcement Learning with
Quasi-Stochastic Approximation [2.294014185517203]
This paper sets out to extend convergence theory to quasi-stochastic approximations.
It is illustrated with applications to gradient-free optimization and policy gradient algorithms for reinforcement learning.
arXiv Detail & Related papers (2020-09-30T04:44:45Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.