Efficient Exploration for LLMs
- URL: http://arxiv.org/abs/2402.00396v2
- Date: Tue, 4 Jun 2024 18:35:09 GMT
- Title: Efficient Exploration for LLMs
- Authors: Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, Benjamin Van Roy,
- Abstract summary: We present evidence of substantial benefit from efficient exploration in gathering human feedback to improve large language models.
In our experiments, an agent sequentially generates queries while fitting a reward model to the feedback received.
Our results demonstrate that efficient exploration enables high levels of performance with far fewer queries.
- Score: 27.59380499111532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present evidence of substantial benefit from efficient exploration in gathering human feedback to improve large language models. In our experiments, an agent sequentially generates queries while fitting a reward model to the feedback received. Our best-performing agent generates queries using double Thompson sampling, with uncertainty represented by an epistemic neural network. Our results demonstrate that efficient exploration enables high levels of performance with far fewer queries. Further, both uncertainty estimation and the choice of exploration scheme play critical roles.
Related papers
- Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Extracting Heuristics from Large Language Models for Reward Shaping in Reinforcement Learning [28.077228879886402]
Reinforcement Learning (RL) suffers from sample inefficiency in reward domains, and the problem is further pronounced in case of transitions.
To improve the sample efficiency, reward shaping is a well-studied approach to introduce intrinsic rewards that can help the RL agent converge to an optimal policy faster.
arXiv Detail & Related papers (2024-05-24T03:53:57Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
This paper investigates how to achieve sample-efficient exploration in continuous control tasks.
We introduce an RL algorithm that incorporates a predictive model and off-policy learning elements.
We derive an intrinsic reward without incurring parameters overhead.
arXiv Detail & Related papers (2024-03-31T11:39:11Z) - MRHER: Model-based Relay Hindsight Experience Replay for Sequential Object Manipulation Tasks with Sparse Rewards [11.79027801942033]
We propose a novel model-based RL framework called Model-based Relay Hindsight Experience Replay (MRHER)
MRHER breaks down a continuous task into subtasks with increasing complexity and utilizes the previous subtask to guide the learning of the subsequent one.
We show that MRHER exhibits state-of-the-art sample efficiency in benchmark tasks, outperforming RHER by 13.79% and 14.29%.
arXiv Detail & Related papers (2023-06-28T09:51:25Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
We propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller task-oriented dialogue model.
This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models.
Our approach outperforms previous state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2023-06-16T13:04:56Z) - Deep RL with Hierarchical Action Exploration for Dialogue Generation [0.0]
This paper presents theoretical analysis and experiments that reveal the performance of the dialogue policy is positively correlated with the sampling size.
We introduce a novel dual-granularity Q-function that explores the most promising response category to intervene in the sampling process.
Our algorithm exhibits both explainability and controllability and generates responses with higher expected rewards.
arXiv Detail & Related papers (2023-03-22T09:29:22Z) - Rewarding Episodic Visitation Discrepancy for Exploration in
Reinforcement Learning [64.8463574294237]
We propose Rewarding Episodic Visitation Discrepancy (REVD) as an efficient and quantified exploration method.
REVD provides intrinsic rewards by evaluating the R'enyi divergence-based visitation discrepancy between episodes.
It is tested on PyBullet Robotics Environments and Atari games.
arXiv Detail & Related papers (2022-09-19T08:42:46Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
We learn a model of the reward function that allows standard RL algorithms to achieve high expected return with as few expert queries as possible.
In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types.
We support our findings with extensive evaluations in multiple environments and with different types of queries.
arXiv Detail & Related papers (2021-02-24T18:46:42Z) - Generative Adversarial Networks for Annotated Data Augmentation in Data
Sparse NLU [0.76146285961466]
Data sparsity is one of the key challenges associated with model development in Natural Language Understanding.
We present our results on boosting NLU model performance through training data augmentation using a sequential generative adversarial network (GAN)
Our experiments reveal synthetic data generated using the sequential generative adversarial network provides significant performance boosts across multiple metrics.
arXiv Detail & Related papers (2020-12-09T20:38:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.