System Characterization of Dispersive Readout in Superconducting Qubits
- URL: http://arxiv.org/abs/2402.00413v1
- Date: Thu, 1 Feb 2024 08:15:16 GMT
- Title: System Characterization of Dispersive Readout in Superconducting Qubits
- Authors: Daniel Sank, Alex Opremcak, Andreas Bengtsson, Mostafa Khezri, Zijun
Chen, Ofer Naaman, Alexander Korotkov
- Abstract summary: We introduce a single protocol to measure the dispersive shift, resonator linewidth, and drive power used in the dispersive readout of superconducting qubits.
We find that the resonator linewidth is poorly controlled with a factor of 2 between the maximum and minimum measured values.
We also introduce a protocol for measuring the readout system efficiency using the same power levels as are used in typical qubit readout.
- Score: 37.940693612514984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing quantum systems with the measurement speed and accuracy needed for
quantum error correction using superconducting qubits requires iterative design
and test informed by accurate models and characterization tools. We introduce a
single protocol, with few prerequisite calibrations, which measures the
dispersive shift, resonator linewidth, and drive power used in the dispersive
readout of superconducting qubits. We find that the resonator linewidth is
poorly controlled with a factor of 2 between the maximum and minimum measured
values, and is likely to require focused attention in future quantum error
correction experiments. We also introduce a protocol for measuring the readout
system efficiency using the same power levels as are used in typical qubit
readout, and without the need to measure the qubit coherence. We routinely run
these protocols on chips with tens of qubits, driven by automation software
with little human interaction. Using the extracted system parameters, we find
that a model based on those parameters predicts the readout signal to noise
ratio to within 10% over a device with 54 qubits.
Related papers
- In situ mixer calibration for superconducting quantum circuits [21.239311757123467]
We introduce an in situ calibration technique and outcome-focused mixer calibration scheme using superconducting qubits.
We experimentally validate the efficacy of this technique by benchmarking single-qubit gate fidelity and qubit coherence time.
arXiv Detail & Related papers (2024-08-21T14:49:39Z) - Parametric multi-element coupling architecture for coherent and
dissipative control of superconducting qubits [0.0]
We present a superconducting qubit architecture based on tunable parametric interactions to perform two-qubit gates, reset, leakage recovery and to read out the qubits.
We experimentally demonstrate a controlled-Z gate with a fidelity of $98.30pm 0.23 %$, a reset operation that unconditionally prepares the qubit ground state with a fidelity of $99.80pm 0.02 %$ and a leakage recovery operation with a $98.5pm 0.3 %$ success probability.
arXiv Detail & Related papers (2024-03-04T16:49:36Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Benchmarking multi-qubit gates -- I: Metrological aspects [0.0]
benchmarking hardware errors in quantum computers has drawn significant attention lately.
Existing benchmarks for digital quantum computers involve averaging the global fidelity over a large set of quantum circuits.
We develop a new figure-of-merit suitable for multi-qubit quantum gates based on the reduced Choi matrix.
arXiv Detail & Related papers (2022-10-09T19:36:21Z) - Fast Quantum Calibration using Bayesian Optimization with State
Parameter Estimator for Non-Markovian Environment [11.710177724383954]
We propose a real-time optimal estimator of qubit states, which utilizes weak measurements and Bayesian optimization to find the optimal control pulses for gate design.
Our numerical results demonstrate a significant reduction in the calibration process, obtaining a high gate fidelity.
arXiv Detail & Related papers (2022-05-25T17:31:15Z) - Experimental Bayesian calibration of trapped ion entangling operations [48.43720700248091]
We develop and characterize an efficient calibration protocol to automatically estimate and adjust experimental parameters of the widely used Molmer-Sorensen entangling gate operation.
We experimentally demonstrate a median gate infidelity of $1.3(1)cdot10-3$, requiring only $1200pm500$ experimental cycles, while completing the entire gate calibration procedure in less than one minute.
arXiv Detail & Related papers (2021-12-02T16:59:00Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.