Exploring Data Management Challenges and Solutions in Agile Software Development: A Literature Review and Practitioner Survey
- URL: http://arxiv.org/abs/2402.00462v4
- Date: Tue, 18 Feb 2025 02:06:56 GMT
- Title: Exploring Data Management Challenges and Solutions in Agile Software Development: A Literature Review and Practitioner Survey
- Authors: Ahmed Fawzy, Amjed Tahir, Matthias Galster, Peng Liang,
- Abstract summary: Managing data related to a software product and its development poses significant challenges for software projects and agile development teams.
These include integrating data from diverse sources and ensuring data quality amidst continuous change and adaptation.
The paper systematically explores data management challenges and potential solutions in agile projects.
- Score: 4.45543024542181
- License:
- Abstract: Context: Managing data related to a software product and its development poses significant challenges for software projects and agile development teams. These include integrating data from diverse sources and ensuring data quality amidst continuous change and adaptation. Objective: The paper systematically explores data management challenges and potential solutions in agile projects, aiming to provide insights into data management challenges and solutions for both researchers and practitioners. Method: We employed a mixed-methods approach, including a systematic literature review (SLR) to understand the state-of-research followed by a survey with practitioners to reflect on the state-of-practice. The SLR reviewed 45 studies, identifying and categorizing data management aspects along with their associated challenges and solutions. The practitioner survey captured practical experiences and solutions from 32 industry practitioners who were significantly involved in data management to complement the findings from the SLR. Results: Our findings identified major data management challenges in practice, such as managing data integration processes, capturing diverse data, automating data collection, and meeting real-time analysis requirements. To address the challenges, solutions such as automation tools, decentralized data management practices, and ontology-based approaches have been identified. The solutions enhance data integration, improve data quality, and enable real-time decision-making by providing flexible frameworks tailored to agile project needs. Conclusion: The study pinpointed significant challenges and actionable solutions in data management for agile software development. Our findings provide practical implications for practitioners and researchers, emphasizing the development of effective data management practices and tools to address those challenges and improve project success.
Related papers
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Deep Learning, Machine Learning, Advancing Big Data Analytics and Management [26.911181864764117]
Advances in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management.
This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies.
It equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics.
arXiv Detail & Related papers (2024-12-03T05:59:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review [0.29998889086656577]
This study proposes an AIOps terminology and taxonomy, establishing a structured incident management procedure and providing guidelines for constructing an AIOps framework.
The goal is to provide a comprehensive review of technical and research aspects in AIOps for incident management, aiming to structure knowledge, identify gaps, and establish a foundation for future developments in the field.
arXiv Detail & Related papers (2024-04-01T17:32:22Z) - An Empirical Study of Challenges in Machine Learning Asset Management [15.07444988262748]
Despite existing research, a significant knowledge gap remains in operational challenges like model versioning, data traceability, and collaboration.
Our study aims to address this gap by analyzing 15,065 posts from developer forums and platforms.
We uncover 133 topics related to asset management challenges, grouped into 16 macro-topics, with software dependency, model deployment, and model training being the most discussed.
arXiv Detail & Related papers (2024-02-25T05:05:52Z) - Data Management For Training Large Language Models: A Survey [64.18200694790787]
Data plays a fundamental role in training Large Language Models (LLMs)
This survey aims to provide a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs.
arXiv Detail & Related papers (2023-12-04T07:42:16Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
We first present an investigation of current data marketplaces, revealing lack of platforms offering detailed information about datasets.
We then introduce the DAM challenge, a benchmark to model the interaction between the data providers and acquirers.
Our evaluation of the submitted strategies underlines the need for effective data acquisition strategies in Machine Learning.
arXiv Detail & Related papers (2023-11-22T22:15:17Z) - Domain-Driven Design in Software Development: A Systematic Literature
Review on Implementation, Challenges, and Effectiveness [0.18726646412385334]
Domain-Driven Design (DDD) addresses software challenges, gaining attention for academia, reimplementation, and adoption.
This Systematic Literature Review (SLR) analyzes DDD research in software development to assess its effectiveness in solving architecture problems.
arXiv Detail & Related papers (2023-10-03T09:22:53Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - Integration of Convolutional Neural Networks in Mobile Applications [3.0280987248827085]
We study the performance of a system that integrates a Deep Learning model as a trade-off between the accuracy and the complexity.
We identify the most concerning challenges when deploying DL-based software in mobile applications.
arXiv Detail & Related papers (2021-03-11T15:27:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.