Generalizing GradCAM for Embedding Networks
- URL: http://arxiv.org/abs/2402.00909v2
- Date: Mon, 5 Feb 2024 06:41:01 GMT
- Title: Generalizing GradCAM for Embedding Networks
- Authors: Mudit Bachhawat
- Abstract summary: We present a new method EmbeddingCAM, which generalizes the Grad-CAM for embedding networks.
We show the effectiveness of our method on CUB-200-2011 dataset and also present quantitative and qualitative analysis on the dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visualizing CNN is an important part in building trust and explaining model's
prediction. Methods like CAM and GradCAM have been really successful in
localizing area of the image responsible for the output but are only limited to
classification models. In this paper, we present a new method EmbeddingCAM,
which generalizes the Grad-CAM for embedding networks. We show that for
classification networks, EmbeddingCAM reduces to GradCAM. We show the
effectiveness of our method on CUB-200-2011 dataset and also present
quantitative and qualitative analysis on the dataset.
Related papers
- FM-G-CAM: A Holistic Approach for Explainable AI in Computer Vision [0.6215404942415159]
We emphasise the need to understand predictions of Computer Vision models, specifically Convolutional Neural Network (CNN) based models.
Existing methods of explaining CNN predictions are mostly based on Gradient-weighted Class Activation Maps (Grad-CAM) and solely focus on a single target class.
We present an exhaustive methodology called Fused Multi-class Gradient-weighted Class Activation Map (FM-G-CAM) that considers multiple top predicted classes.
arXiv Detail & Related papers (2023-12-10T19:33:40Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
We propose an outcome-agnostic CAM approach, called BroadCAM, for small-scale weakly supervised applications.
By evaluating BroadCAM on VOC2012 and BCSS-WSSS for WSSS and OpenImages30k for WSOL, BroadCAM demonstrates superior performance.
arXiv Detail & Related papers (2023-09-07T06:45:43Z) - Attention-based Class Activation Diffusion for Weakly-Supervised
Semantic Segmentation [98.306533433627]
extracting class activation maps (CAM) is a key step for weakly-supervised semantic segmentation (WSSS)
This paper proposes a new method to couple CAM and Attention matrix in a probabilistic Diffusion way, and dub it AD-CAM.
Experiments show that AD-CAM as pseudo labels can yield stronger WSSS models than the state-of-the-art variants of CAM.
arXiv Detail & Related papers (2022-11-20T10:06:32Z) - Recipro-CAM: Gradient-free reciprocal class activation map [0.0]
We propose a lightweight architecture and gradient free Reciprocal CAM (Recipro-CAM) to exploit the correlation between activation maps and network outputs.
With the proposed method, we achieved the gains of 1:78 - 3:72% in the ResNet family compared to Score-CAM.
In addition, Recipro-CAM exhibits a saliency map generation rate similar to Grad-CAM and approximately 148 times faster than Score-CAM.
arXiv Detail & Related papers (2022-09-28T13:15:03Z) - Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation [88.55040177178442]
Class activation maps (CAM) is arguably the most standard step of generating pseudo masks for semantic segmentation.
Yet, the crux of the unsatisfactory pseudo masks is the binary cross-entropy loss (BCE) widely used in CAM.
We introduce an embarrassingly simple yet surprisingly effective method: Reactivating the converged CAM with BCE by using softmax cross-entropy loss (SCE)
The evaluation on both PASCAL VOC and MSCOCO shows that ReCAM not only generates high-quality masks, but also supports plug-and-play in any CAM variant with little overhead.
arXiv Detail & Related papers (2022-03-02T09:14:58Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Use HiResCAM instead of Grad-CAM for faithful explanations of
convolutional neural networks [89.56292219019163]
Explanation methods facilitate the development of models that learn meaningful concepts and avoid exploiting spurious correlations.
We illustrate a previously unrecognized limitation of the popular neural network explanation method Grad-CAM.
We propose HiResCAM, a class-specific explanation method that is guaranteed to highlight only the locations the model used to make each prediction.
arXiv Detail & Related papers (2020-11-17T19:26:14Z) - Axiom-based Grad-CAM: Towards Accurate Visualization and Explanation of
CNNs [29.731732363623713]
Class Activation Mapping (CAM) methods have been proposed to discover the connection between CNN's decision and image regions.
In this paper, we introduce two axioms -- Conservation and Sensitivity -- to the visualization paradigm of the CAM methods.
A dedicated Axiom-based Grad-CAM (XGrad-CAM) is proposed to satisfy these axioms as much as possible.
arXiv Detail & Related papers (2020-08-05T18:42:33Z) - Eigen-CAM: Class Activation Map using Principal Components [1.2691047660244335]
This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models.
The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers.
arXiv Detail & Related papers (2020-08-01T17:14:13Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets.
We introduce a novel training approach for existing FSC models.
We show that explanation-guided training effectively improves the model generalization.
arXiv Detail & Related papers (2020-07-17T07:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.