Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation
- URL: http://arxiv.org/abs/2402.01052v2
- Date: Sat, 15 Jun 2024 16:44:49 GMT
- Title: Weakly Convex Regularisers for Inverse Problems: Convergence of Critical Points and Primal-Dual Optimisation
- Authors: Zakhar Shumaylov, Jeremy Budd, Subhadip Mukherjee, Carola-Bibiane Schönlieb,
- Abstract summary: We present a generalised formulation of convergent regularisation in terms of critical points.
We show that this is achieved by a class of weakly convex regularisers.
Applying this theory to learned regularisation, we prove universal approximation for input weakly convex neural networks.
- Score: 12.455342327482223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational regularisation is the primary method for solving inverse problems, and recently there has been considerable work leveraging deeply learned regularisation for enhanced performance. However, few results exist addressing the convergence of such regularisation, particularly within the context of critical points as opposed to global minimisers. In this paper, we present a generalised formulation of convergent regularisation in terms of critical points, and show that this is achieved by a class of weakly convex regularisers. We prove convergence of the primal-dual hybrid gradient method for the associated variational problem, and, given a Kurdyka-Lojasiewicz condition, an $\mathcal{O}(\log{k}/k)$ ergodic convergence rate. Finally, applying this theory to learned regularisation, we prove universal approximation for input weakly convex neural networks (IWCNN), and show empirically that IWCNNs can lead to improved performance of learned adversarial regularisers for computed tomography (CT) reconstruction.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - A Unified Approach to Controlling Implicit Regularization via Mirror
Descent [18.536453909759544]
Mirror descent (MD) is a notable generalization of gradient descent (GD)
We show that MD can be implemented efficiently and enjoys fast convergence under suitable conditions.
arXiv Detail & Related papers (2023-06-24T03:57:26Z) - A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite
Optimization [2.9112649816695204]
We study a first order primal-dual method for solving convex-concave saddle point problems over real Banach spaces.
Our framework is general and does not need strong convexity of the entropies inducing the Bregman divergences in the algorithm.
Numerical applications are considered including entropically regularized Wasserstein barycenter problems and regularized inverse problems on the simplex.
arXiv Detail & Related papers (2021-12-22T14:47:44Z) - On Asymptotic Linear Convergence of Projected Gradient Descent for
Constrained Least Squares [22.851500417035947]
This manuscript presents a unified framework for the analysis of projected gradient descent in the context of constrained least squares.
We present a recipe for the convergence analysis of PGD and demonstrate it via a beginning-to-end application of the recipe on four fundamental problems.
arXiv Detail & Related papers (2021-12-22T09:49:51Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Learned convex regularizers for inverse problems [3.294199808987679]
We propose to learn a data-adaptive input- neural network (ICNN) as a regularizer for inverse problems.
We prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations.
We show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.
arXiv Detail & Related papers (2020-08-06T18:58:35Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
We prove that Nesterov's extrapolation has the strength to make the individual convergence of gradient descent methods optimal for nonsmooth problems.
We give an extension of the derived algorithms to solve regularized learning tasks with nonsmooth losses in settings.
Our method is applicable as an efficient tool for solving large-scale $l$1-regularized hinge-loss learning problems.
arXiv Detail & Related papers (2020-06-08T03:35:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.