No Free Prune: Information-Theoretic Barriers to Pruning at Initialization
- URL: http://arxiv.org/abs/2402.01089v2
- Date: Wed, 24 Jul 2024 18:05:45 GMT
- Title: No Free Prune: Information-Theoretic Barriers to Pruning at Initialization
- Authors: Tanishq Kumar, Kevin Luo, Mark Sellke,
- Abstract summary: We show the Law of Robustness of arXiv:2105.12806 extends to sparse networks with the usual parameter count replaced by $p_texteff$.
Experiments on neural networks confirm that information gained during training may indeed affect model capacity.
- Score: 8.125999058340998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existence of "lottery tickets" arXiv:1803.03635 at or near initialization raises the tantalizing question of whether large models are necessary in deep learning, or whether sparse networks can be quickly identified and trained without ever training the dense models that contain them. However, efforts to find these sparse subnetworks without training the dense model ("pruning at initialization") have been broadly unsuccessful arXiv:2009.08576. We put forward a theoretical explanation for this, based on the model's effective parameter count, $p_\text{eff}$, given by the sum of the number of non-zero weights in the final network and the mutual information between the sparsity mask and the data. We show the Law of Robustness of arXiv:2105.12806 extends to sparse networks with the usual parameter count replaced by $p_\text{eff}$, meaning a sparse neural network which robustly interpolates noisy data requires a heavily data-dependent mask. We posit that pruning during and after training outputs masks with higher mutual information than those produced by pruning at initialization. Thus two networks may have the same sparsities, but differ in effective parameter count based on how they were trained. This suggests that pruning near initialization may be infeasible and explains why lottery tickets exist, but cannot be found fast (i.e. without training the full network). Experiments on neural networks confirm that information gained during training may indeed affect model capacity.
Related papers
- Finding Lottery Tickets in Vision Models via Data-driven Spectral Foresight Pruning [14.792099973449794]
We propose an algorithm to align the training dynamics of the sparse network with that of the dense one.
We show how the usually neglected data-dependent component in the NTK's spectrum can be taken into account.
Path eXclusion (PX) is able to find lottery tickets even at high sparsity levels.
arXiv Detail & Related papers (2024-06-03T22:19:42Z) - LOFT: Finding Lottery Tickets through Filter-wise Training [15.06694204377327]
We show how one can efficiently identify the emergence of such winning tickets, and use this observation to design efficient pretraining algorithms.
We present the emphLOttery ticket through Filter-wise Training algorithm, dubbed as textscLoFT.
Experiments show that textscLoFT $i)$ preserves and finds good lottery tickets, while $ii)$ achieves it non-trivial and communication savings.
arXiv Detail & Related papers (2022-10-28T14:43:42Z) - Training Your Sparse Neural Network Better with Any Mask [106.134361318518]
Pruning large neural networks to create high-quality, independently trainable sparse masks is desirable.
In this paper we demonstrate an alternative opportunity: one can customize the sparse training techniques to deviate from the default dense network training protocols.
Our new sparse training recipe is generally applicable to improving training from scratch with various sparse masks.
arXiv Detail & Related papers (2022-06-26T00:37:33Z) - Dual Lottery Ticket Hypothesis [71.95937879869334]
Lottery Ticket Hypothesis (LTH) provides a novel view to investigate sparse network training and maintain its capacity.
In this work, we regard the winning ticket from LTH as the subnetwork which is in trainable condition and its performance as our benchmark.
We propose a simple sparse network training strategy, Random Sparse Network Transformation (RST), to substantiate our DLTH.
arXiv Detail & Related papers (2022-03-08T18:06:26Z) - The Unreasonable Effectiveness of Random Pruning: Return of the Most
Naive Baseline for Sparse Training [111.15069968583042]
Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training.
We empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent.
Our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning.
arXiv Detail & Related papers (2022-02-05T21:19:41Z) - On the Compression of Natural Language Models [0.0]
We will review state-of-the-art compression techniques such as quantization, knowledge distillation, and pruning.
The goal of this work is to assess whether such a trainable subnetwork exists for natural language models (NLM)
arXiv Detail & Related papers (2021-12-13T08:14:21Z) - FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training
with Dynamic Sparsity [74.58777701536668]
We introduce the FreeTickets concept, which can boost the performance of sparse convolutional neural networks over their dense network equivalents by a large margin.
We propose two novel efficient ensemble methods with dynamic sparsity, which yield in one shot many diverse and accurate tickets "for free" during the sparse training process.
arXiv Detail & Related papers (2021-06-28T10:48:20Z) - Good Students Play Big Lottery Better [84.6111281091602]
Lottery ticket hypothesis suggests that a dense neural network contains a sparse sub-network that can match the test accuracy of the original dense net.
Recent studies demonstrate that a sparse sub-network can still be obtained by using a rewinding technique.
This paper proposes a new, simpler and yet powerful technique for re-training the sub-network, called "Knowledge Distillation ticket" (KD ticket)
arXiv Detail & Related papers (2021-01-08T23:33:53Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Pruning neural networks without any data by iteratively conserving
synaptic flow [27.849332212178847]
Pruning the parameters of deep neural networks has generated intense interest due to potential savings in time, memory and energy.
Recent works have identified, through an expensive sequence of training and pruning cycles, the existence of winning lottery tickets or sparse trainableworks.
We provide an affirmative answer to this question through theory driven algorithm design.
arXiv Detail & Related papers (2020-06-09T19:21:57Z) - Towards Deep Learning Models Resistant to Large Perturbations [0.0]
Adversarial robustness has proven to be a required property of machine learning algorithms.
We show that the well-established algorithm called "adversarial training" fails to train a deep neural network given a large, but reasonable, perturbation magnitude.
arXiv Detail & Related papers (2020-03-30T12:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.