Efficient Reinforcement Learning for Routing Jobs in Heterogeneous Queueing Systems
- URL: http://arxiv.org/abs/2402.01147v2
- Date: Mon, 22 Apr 2024 01:59:47 GMT
- Title: Efficient Reinforcement Learning for Routing Jobs in Heterogeneous Queueing Systems
- Authors: Neharika Jali, Guannan Qu, Weina Wang, Gauri Joshi,
- Abstract summary: We consider the problem of efficiently routing jobs that arrive into a central queue to a system of heterogeneous servers.
Unlike homogeneous systems, a threshold policy, that routes jobs to the slow server(s) when the queue length exceeds a certain threshold, is known to be optimal for the one-fast-one-slow two-server system.
We propose ACHQ, an efficient policy gradient based algorithm with a low dimensional soft threshold policy parameterization.
- Score: 21.944723061337267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of efficiently routing jobs that arrive into a central queue to a system of heterogeneous servers. Unlike homogeneous systems, a threshold policy, that routes jobs to the slow server(s) when the queue length exceeds a certain threshold, is known to be optimal for the one-fast-one-slow two-server system. But an optimal policy for the multi-server system is unknown and non-trivial to find. While Reinforcement Learning (RL) has been recognized to have great potential for learning policies in such cases, our problem has an exponentially large state space size, rendering standard RL inefficient. In this work, we propose ACHQ, an efficient policy gradient based algorithm with a low dimensional soft threshold policy parameterization that leverages the underlying queueing structure. We provide stationary-point convergence guarantees for the general case and despite the low-dimensional parameterization prove that ACHQ converges to an approximate global optimum for the special case of two servers. Simulations demonstrate an improvement in expected response time of up to ~30% over the greedy policy that routes to the fastest available server.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Queueing Matching Bandits with Preference Feedback [10.988222071035198]
We consider multi-class asymmetric queueing systems consisting of $N$ queues on one side and $K$ servers on the other side.
The service rate of each job-server assignment is unknown and modeled by a feature-based Multi-nomial Logit (MNL) function.
We propose algorithms based on UCB and Thompson Sampling, which achieve system stability with an average queue length bound to $O(minN,K/epsilon)$ for a large time horizon.
arXiv Detail & Related papers (2024-10-14T02:29:06Z) - Twin Sorting Dynamic Programming Assisted User Association and Wireless Bandwidth Allocation for Hierarchical Federated Learning [7.274131715810928]
We study user association and wireless bandwidth allocation for a hierarchical federated learning system.
We design the twin sorting dynamic programming (TSDP) algorithm that obtains a globally optimal solution in time when there are two edge servers.
In addition, we put forward the TSDP-assisted algorithm for user association when there are three or more edge servers.
arXiv Detail & Related papers (2024-08-17T02:29:32Z) - Shadowheart SGD: Distributed Asynchronous SGD with Optimal Time Complexity Under Arbitrary Computation and Communication Heterogeneity [85.92481138826949]
We develop a new method-Shadowheart SGD-that provably improves the time complexities of all previous centralized methods.
We also consider the bidirectional setup, where broadcasting from the server to the workers is non-negligible, and develop a corresponding method.
arXiv Detail & Related papers (2024-02-07T12:15:56Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
We propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation.
We show that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
arXiv Detail & Related papers (2023-11-03T13:34:44Z) - Learning While Scheduling in Multi-Server Systems with Unknown
Statistics: MaxWeight with Discounted UCB [18.898514227870926]
This paper considers a multi-server system with multiple servers and multiple types of jobs, where different job types require different amounts of processing time at different servers.
The goal is to schedule jobs on servers without knowing the statistics of the processing times.
We propose a new algorithm, which combines the MaxWeight scheduling policy with discounted upper confidence bound (UCB) to simultaneously learn statistics and schedule jobs to servers.
arXiv Detail & Related papers (2022-09-02T15:37:02Z) - Scheduling Servers with Stochastic Bilinear Rewards [7.519872646378837]
A system optimization problem arises in multi-class, multi-server queueing system scheduling.
We propose a scheduling algorithm based on weighted proportional fair allocation criteria augmented with marginal costs for reward.
Our algorithm sub-linear regret and sublinear mean holding cost (and queue length bound) with respect to the time horizon, thus guaranteeing queueing system stability.
arXiv Detail & Related papers (2021-12-13T00:37:20Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Tailored Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud
System [54.588242387136376]
We introduce KaiS, a learning-based scheduling framework for edge-cloud systems.
First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch.
Second, for diverse system scales and structures, we use graph neural networks to embed system state information.
Third, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration.
arXiv Detail & Related papers (2021-01-17T03:45:25Z) - RL-QN: A Reinforcement Learning Framework for Optimal Control of
Queueing Systems [8.611328447624677]
We consider using model-based reinforcement learning (RL) to learn the optimal control policy for queueing networks.
Traditional approaches in RL, however, cannot handle the unbounded state spaces of the network control problem.
We propose a new algorithm, called Reinforcement Learning for Queueing Networks (RL-QN), which applies model-based RL methods over a finite subset of the state space.
arXiv Detail & Related papers (2020-11-14T22:12:27Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
Machine learning algorithms are deployed at the network edge for training artificial intelligence (AI) models.
This paper focuses on the novel joint design of parameter (computation load) allocation and bandwidth allocation.
arXiv Detail & Related papers (2020-03-10T05:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.