AmbientCycleGAN for Establishing Interpretable Stochastic Object Models
Based on Mathematical Phantoms and Medical Imaging Measurements
- URL: http://arxiv.org/abs/2402.01171v1
- Date: Fri, 2 Feb 2024 06:30:33 GMT
- Title: AmbientCycleGAN for Establishing Interpretable Stochastic Object Models
Based on Mathematical Phantoms and Medical Imaging Measurements
- Authors: Xichen Xu, Wentao Chen, Weimin Zhou
- Abstract summary: This work introduces a novel approach called AmbientCycleGAN that translates mathematical SOMs to realistic SOMs by use of noisy measurement data.
It is demonstrated that our proposed method can stably establish SOMs based on mathematical models and noisy measurement data.
- Score: 4.573310303307945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical imaging systems that are designed for producing diagnostically
informative images should be objectively assessed via task-based measures of
image quality (IQ). Ideally, computation of task-based measures of IQ needs to
account for all sources of randomness in the measurement data, including the
variability in the ensemble of objects to be imaged. To address this need,
stochastic object models (SOMs) that can generate an ensemble of synthesized
objects or phantoms can be employed. Various mathematical SOMs or phantoms were
developed that can interpretably synthesize objects, such as lumpy object
models and parameterized torso phantoms. However, such SOMs that are purely
mathematically defined may not be able to comprehensively capture realistic
object variations. To establish realistic SOMs, it is desirable to use
experimental data. An augmented generative adversarial network (GAN),
AmbientGAN, was recently proposed for establishing SOMs from medical imaging
measurements. However, it remains unclear to which extent the
AmbientGAN-produced objects can be interpretably controlled. This work
introduces a novel approach called AmbientCycleGAN that translates mathematical
SOMs to realistic SOMs by use of noisy measurement data. Numerical studies that
consider clustered lumpy background (CLB) models and real mammograms are
conducted. It is demonstrated that our proposed method can stably establish
SOMs based on mathematical models and noisy measurement data. Moreover, the
ability of the proposed AmbientCycleGAN to interpretably control image features
in the synthesized objects is investigated.
Related papers
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - Evaluating Procedures for Establishing Generative Adversarial
Network-based Stochastic Image Models in Medical Imaging [10.479865560555199]
generative adversarial networks (GANs) hold tremendous promise for several areas of medical imaging.
In this work, canonical image models (SIMs) that simulate realistic vessels in angiography images are employed to evaluate procedures for establishing SIMs using GANs.
It is shown that evaluating GANs using classical metrics and medically relevant metrics may lead to different conclusions about the fidelity of the trained GANs.
arXiv Detail & Related papers (2022-04-07T16:19:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Learning stochastic object models from medical imaging measurements by
use of advanced AmbientGANs [7.987904193401004]
generative adversarial networks (GANs) hold potential for such tasks.
Deep generative neural networks, such as generative adversarial networks (GANs) hold potential for such tasks.
In this work, a modified AmbientGAN training strategy is proposed that is suitable for modern progressive or multi-resolution training approaches.
arXiv Detail & Related papers (2021-06-27T21:46:23Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Advancing the AmbientGAN for learning stochastic object models [7.445527629361621]
Variation in the objects to-be-imaged is an important source of variability that can significantly limit observer performance.
In this study, we propose two advanced AmbientGAN architectures: 3D ProAmGANs and Style-AmbientGANs (StyAmGANs)
The ability of 3D ProAmGANs to learn 3D SOMs from imaging measurements and the ability of StyAmGANs to control fine-scale textures of synthesized objects are demonstrated.
arXiv Detail & Related papers (2021-01-30T18:08:23Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module.
The image synthesis network is designed to efficiently span the pose configuration space.
We experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone.
arXiv Detail & Related papers (2020-08-18T20:30:47Z) - Learning stochastic object models from medical imaging measurements
using Progressively-Growing AmbientGANs [14.501812971529137]
An important source of variability that can significantly limit observer performance is variation in the objects to-be-imaged.
It is desirable to establish SOMs from experimental imaging measurements acquired by use of a well-characterized imaging system.
Deep generative neural networks, such as generative adversarial networks (GANs) hold great potential for this task.
arXiv Detail & Related papers (2020-05-29T18:45:37Z) - Progressively-Growing AmbientGANs For Learning Stochastic Object Models
From Imaging Measurements [14.501812971529137]
objective optimization of medical imaging systems requires full characterization of all sources of randomness in the measured data.
We propose establishing an object model (SOM) that describes the variability in the class of objects to-be-imaged.
Because medical imaging systems record imaging measurements that are noisy and indirect representations of object properties, GANs cannot be directly applied to establish models of objects to-be-imaged.
arXiv Detail & Related papers (2020-01-26T21:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.