DeepBranchTracer: A Generally-Applicable Approach to Curvilinear
Structure Reconstruction Using Multi-Feature Learning
- URL: http://arxiv.org/abs/2402.01187v1
- Date: Fri, 2 Feb 2024 07:13:07 GMT
- Title: DeepBranchTracer: A Generally-Applicable Approach to Curvilinear
Structure Reconstruction Using Multi-Feature Learning
- Authors: Chao Liu, Ting Zhao, Nenggan Zheng
- Abstract summary: We introduce DeepBranchTracer, a novel method that learns both external image features and internal geometric characteristics to reconstruct curvilinear structures.
We extensively evaluated our model on both 2D and 3D datasets, demonstrating its superior performance over existing segmentation and reconstruction methods.
- Score: 12.047523258256088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Curvilinear structures, which include line-like continuous objects, are
fundamental geometrical elements in image-based applications. Reconstructing
these structures from images constitutes a pivotal research area in computer
vision. However, the complex topology and ambiguous image evidence render this
process a challenging task. In this paper, we introduce DeepBranchTracer, a
novel method that learns both external image features and internal geometric
characteristics to reconstruct curvilinear structures. Firstly, we formulate
the curvilinear structures extraction as a geometric attribute estimation
problem. Then, a curvilinear structure feature learning network is designed to
extract essential branch attributes, including the image features of centerline
and boundary, and the geometric features of direction and radius. Finally,
utilizing a multi-feature fusion tracing strategy, our model iteratively traces
the entire branch by integrating the extracted image and geometric features. We
extensively evaluated our model on both 2D and 3D datasets, demonstrating its
superior performance over existing segmentation and reconstruction methods in
terms of accuracy and continuity.
Related papers
- Geometry-guided Feature Learning and Fusion for Indoor Scene Reconstruction [14.225228781008209]
This paper proposes a novel geometry integration mechanism for 3D scene reconstruction.
Our approach incorporates 3D geometry at three levels, i.e. feature learning, feature fusion, and network supervision.
arXiv Detail & Related papers (2024-08-28T08:02:47Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification.
We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations.
We develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations.
arXiv Detail & Related papers (2022-10-25T01:55:17Z) - Learning from Protein Structure with Geometric Vector Perceptrons [6.5360079597553025]
We introduce geometric vector perceptrons, which extend standard dense layers to operate on collections of Euclidean vectors.
We demonstrate our approach on two important problems in learning from protein structure: model quality assessment and computational protein design.
arXiv Detail & Related papers (2020-09-03T01:54:25Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z) - Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video [90.93141123721713]
Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world.
It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion.
We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera.
arXiv Detail & Related papers (2020-05-07T10:39:20Z) - Shape-Oriented Convolution Neural Network for Point Cloud Analysis [59.405388577930616]
Point cloud is a principal data structure adopted for 3D geometric information encoding.
Shape-oriented message passing scheme dubbed ShapeConv is proposed to focus on the representation learning of the underlying shape formed by each local neighboring point.
arXiv Detail & Related papers (2020-04-20T16:11:51Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
We propose a novel formulation that allows to jointly recover the geometry of a 3D object as a set of primitives.
Our model recovers the higher level structural decomposition of various objects in the form of a binary tree of primitives.
Our experiments on the ShapeNet and D-FAUST datasets demonstrate that considering the organization of parts indeed facilitates reasoning about 3D geometry.
arXiv Detail & Related papers (2020-04-02T17:58:05Z) - Unsupervised Learning of Intrinsic Structural Representation Points [50.92621061405056]
Learning structures of 3D shapes is a fundamental problem in the field of computer graphics and geometry processing.
We present a simple yet interpretable unsupervised method for learning a new structural representation in the form of 3D structure points.
arXiv Detail & Related papers (2020-03-03T17:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.