Efficient Causal Graph Discovery Using Large Language Models
- URL: http://arxiv.org/abs/2402.01207v4
- Date: Sat, 20 Jul 2024 18:51:58 GMT
- Title: Efficient Causal Graph Discovery Using Large Language Models
- Authors: Thomas Jiralerspong, Xiaoyin Chen, Yash More, Vedant Shah, Yoshua Bengio,
- Abstract summary: The proposed framework uses a breadth-first search (BFS) approach which allows it to use only a linear number of queries.
In addition to being more time and data-efficient, the proposed framework achieves state-of-the-art results on real-world causal graphs of varying sizes.
- Score: 42.724534747353665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel framework that leverages LLMs for full causal graph discovery. While previous LLM-based methods have used a pairwise query approach, this requires a quadratic number of queries which quickly becomes impractical for larger causal graphs. In contrast, the proposed framework uses a breadth-first search (BFS) approach which allows it to use only a linear number of queries. We also show that the proposed method can easily incorporate observational data when available, to improve performance. In addition to being more time and data-efficient, the proposed framework achieves state-of-the-art results on real-world causal graphs of varying sizes. The results demonstrate the effectiveness and efficiency of the proposed method in discovering causal relationships, showcasing its potential for broad applicability in causal graph discovery tasks across different domains.
Related papers
- Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
We introduce GraphAgent-Reasoner, a fine-tuning-free framework for explicit and precise graph reasoning.
Inspired by distributed graph computation theory, our framework decomposes graph problems into smaller, node-centric tasks that are distributed among multiple agents.
Our framework demonstrates the capability to handle real-world graph reasoning applications such as webpage importance analysis.
arXiv Detail & Related papers (2024-10-07T15:34:14Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
We introduce ProGraph, a benchmark for large language models (LLMs) to process graphs.
Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.
We propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries.
arXiv Detail & Related papers (2024-09-29T11:38:45Z) - RoarGraph: A Projected Bipartite Graph for Efficient Cross-Modal Approximate Nearest Neighbor Search [11.069814476661827]
Cross-modal ANNS aims to use the data vector from one modality to retrieve the most similar items from another.
State-of-the-art ANNS approaches suffer poor performance for OOD workloads.
We propose pRojected bipartite Graph (RoarGraph), an efficient ANNS graph index built under the guidance of query distribution.
arXiv Detail & Related papers (2024-08-16T06:48:16Z) - Large Language Models are Effective Priors for Causal Graph Discovery [6.199818486385127]
Causal structure discovery from observations can be improved by integrating background knowledge provided by an expert to reduce the hypothesis space.
Recently, Large Language Models (LLMs) have begun to be considered as sources of prior information given the low cost of querying them relative to a human expert.
arXiv Detail & Related papers (2024-05-22T11:39:11Z) - Localized RETE for Incremental Graph Queries [1.3858051019755282]
We propose an extension semantics that enables local yet fully incremental execution graph queries.
The proposed technique can significantly improve performance regarding memory consumption and execution time in favorable cases, but may incur a noticeable linear overhead unfavorable cases.
arXiv Detail & Related papers (2024-05-02T10:00:37Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Towards Sequence Utility Maximization under Utility Occupancy Measure [53.234101208024335]
In the database, although utility is a flexible criterion for each pattern, it is a more absolute criterion due to neglect of utility sharing.
We first define utility occupancy on sequence data and raise the problem of High Utility-Occupancy Sequential Pattern Mining.
An algorithm called Sequence Utility Maximization with Utility occupancy measure (SUMU) is proposed.
arXiv Detail & Related papers (2022-12-20T17:28:53Z) - Pooling Architecture Search for Graph Classification [36.728077433219916]
Graph neural networks (GNNs) are designed to learn node-level representation based on neighborhood aggregation schemes.
Pooling methods are applied after the aggregation operation to generate coarse-grained graphs.
It is a challenging problem to design a universal pooling architecture to perform well in most cases.
We propose to use neural architecture search (NAS) to search for adaptive pooling architectures for graph classification.
arXiv Detail & Related papers (2021-08-24T09:03:03Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.