A Probabilistic Model Behind Self-Supervised Learning
- URL: http://arxiv.org/abs/2402.01399v3
- Date: Tue, 15 Oct 2024 13:16:13 GMT
- Title: A Probabilistic Model Behind Self-Supervised Learning
- Authors: Alice Bizeul, Bernhard Schölkopf, Carl Allen,
- Abstract summary: In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
- Score: 53.64989127914936
- License:
- Abstract: In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels. A common task is to classify augmentations or different modalities of the data, which share semantic content (e.g. an object in an image) but differ in style (e.g. the object's location). Many approaches to self-supervised learning have been proposed, e.g. SimCLR, CLIP, and DINO, which have recently gained much attention for their representations achieving downstream performance comparable to supervised learning. However, a theoretical understanding of self-supervised methods eludes. Addressing this, we present a generative latent variable model for self-supervised learning and show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations, providing a unifying theoretical framework for these methods. The proposed model also justifies connections drawn to mutual information and the use of a ''projection head''. Learning representations by fitting the model generatively (termed SimVAE) improves performance over discriminative and other VAE-based methods on simple image benchmarks and significantly narrows the gap between generative and discriminative representation learning in more complex settings. Importantly, as our analysis predicts, SimVAE outperforms self-supervised learning where style information is required, taking an important step toward understanding self-supervised methods and achieving task-agnostic representations.
Related papers
- Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Semi-supervised learning made simple with self-supervised clustering [65.98152950607707]
Self-supervised learning models have been shown to learn rich visual representations without requiring human annotations.
We propose a conceptually simple yet empirically powerful approach to turn clustering-based self-supervised methods into semi-supervised learners.
arXiv Detail & Related papers (2023-06-13T01:09:18Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
Self-supervised learning has achieved great success in learning visual representations without data annotations.
We introduce a novel relational SSL paradigm that learns representations by modeling the relationship between different instances.
Our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency.
arXiv Detail & Related papers (2021-07-20T06:53:07Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
Recent works have shown that wider and deeper models benefit more from self-supervised learning than smaller models.
We propose Distill-on-the-Go (DoGo), a self-supervised learning paradigm using single-stage online knowledge distillation.
Our results show significant performance gain in the presence of noisy and limited labels.
arXiv Detail & Related papers (2021-04-20T09:59:23Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.