Exploring the Effect of Multiple Natural Languages on Code Suggestion
Using GitHub Copilot
- URL: http://arxiv.org/abs/2402.01438v1
- Date: Fri, 2 Feb 2024 14:30:02 GMT
- Title: Exploring the Effect of Multiple Natural Languages on Code Suggestion
Using GitHub Copilot
- Authors: Kei Koyanagi, Dong Wang, Kotaro Noguchi, Masanari Kondo, Alexander
Serebrenik, Yasutaka Kamei, Naoyasu Ubayashi
- Abstract summary: GitHub Copilot is an AI-enabled tool that automates program synthesis.
Recent studies have extensively examined Copilot's capabilities in various programming tasks.
However, little is known about the effect of different natural languages on code suggestion.
- Score: 46.822148186169144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GitHub Copilot is an AI-enabled tool that automates program synthesis. It has
gained significant attention since its launch in 2021. Recent studies have
extensively examined Copilot's capabilities in various programming tasks, as
well as its security issues. However, little is known about the effect of
different natural languages on code suggestion. Natural language is considered
a social bias in the field of NLP, and this bias could impact the diversity of
software engineering. To address this gap, we conducted an empirical study to
investigate the effect of three popular natural languages (English, Japanese,
and Chinese) on Copilot. We used 756 questions of varying difficulty levels
from AtCoder contests for evaluation purposes. The results highlight that the
capability varies across natural languages, with Chinese achieving the worst
performance. Furthermore, regardless of the type of natural language, the
performance decreases significantly as the difficulty of questions increases.
Our work represents the initial step in comprehending the significance of
natural languages in Copilot's capability and introduces promising
opportunities for future endeavors.
Related papers
- Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPT is an AI tool that enhances software production efficiency.
We estimate ChatGPT's effects on the number of git pushes, repositories, and unique developers per 100,000 people.
These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.
arXiv Detail & Related papers (2024-06-16T19:11:15Z) - Linguacodus: A Synergistic Framework for Transformative Code Generation in Machine Learning Pipelines [0.0]
We introduce a dynamic pipeline that transforms natural language task descriptions into code through high-level data-shaping instructions.
This paper details the fine-tuning process, and sheds light on how natural language descriptions can be translated into functional code.
We propose an algorithm capable of transforming a natural description of an ML task into code with minimal human interaction.
arXiv Detail & Related papers (2024-03-18T08:58:47Z) - Exploring the Problems, their Causes and Solutions of AI Pair Programming: A Study on GitHub and Stack Overflow [6.724815667295355]
GitHub Copilot, the AI programmer pair, utilize machine learning models trained on a large corpus of code snippets to generate code suggestions.
Despite its popularity in software development, there is limited empirical evidence on the actual experiences of practitioners who work with Copilot.
We collected data from 473 GitHub issues, 706 GitHub discussions, and 142 Stack Overflow posts.
arXiv Detail & Related papers (2023-11-02T06:24:38Z) - Learning Transfers over Several Programming Languages [5.350495525141013]
Cross-lingual transfer uses data from a source language to improve model performance on a target language.
This paper reports extensive experiments on four tasks using a transformer-based large language model and 11 to 41 programming languages.
We find that learning transfers well across several programming languages.
arXiv Detail & Related papers (2023-10-25T19:04:33Z) - Conversing with Copilot: Exploring Prompt Engineering for Solving CS1
Problems Using Natural Language [3.155277175705079]
GitHub Copilot is an artificial intelligence model for automatically generating source code from natural language problem descriptions.
Since June 2022, Copilot has officially been available for free to all students as a plug-in to development environments like Visual Studio Code.
arXiv Detail & Related papers (2022-10-27T03:48:24Z) - Piloting Copilot and Codex: Hot Temperature, Cold Prompts, or Black
Magic? [5.714553194279462]
We investigate the various input parameters of two language models, and conduct a study to understand if variations of these input parameters can have a significant impact on the quality of the generated programs.
Our results showed that varying the input parameters can significantly improve the performance of language models.
arXiv Detail & Related papers (2022-10-26T13:28:14Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages [76.93265104421559]
We benchmark code generation from natural language commands extending beyond English.
We annotated a total of 896 NL-code pairs in three languages: Spanish, Japanese, and Russian.
While the difficulties vary across these three languages, all systems lag significantly behind their English counterparts.
arXiv Detail & Related papers (2022-03-16T04:21:50Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z) - AVATAR: A Parallel Corpus for Java-Python Program Translation [77.86173793901139]
Program translation refers to migrating source code from one language to another.
We present AVATAR, a collection of 9,515 programming problems and their solutions written in two popular languages, Java and Python.
arXiv Detail & Related papers (2021-08-26T05:44:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.