Decoding Speculative Decoding
- URL: http://arxiv.org/abs/2402.01528v3
- Date: Mon, 12 Aug 2024 01:44:26 GMT
- Title: Decoding Speculative Decoding
- Authors: Minghao Yan, Saurabh Agarwal, Shivaram Venkataraman,
- Abstract summary: Speculative Decoding is a technique to speed up inference for Large Language Models without sacrificing quality.
We study over 350 experiments with LLaMA-65B and OPT-66B using speculative decoding.
Our newly designed draft model for LLaMA-65B can provide 111% higher throughput than existing draft models.
- Score: 4.56754610152086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speculative Decoding is a widely used technique to speed up inference for Large Language Models (LLMs) without sacrificing quality. When performing inference, speculative decoding uses a smaller draft model to generate speculative tokens and then uses the target LLM to verify those draft tokens. The speedup provided by speculative decoding heavily depends on the choice of the draft model. In this work, we perform a detailed study comprising over 350 experiments with LLaMA-65B and OPT-66B using speculative decoding and delineate the factors that affect the performance gain provided by speculative decoding. Our experiments indicate that the performance of speculative decoding depends heavily on the latency of the draft model, and the draft model's capability in language modeling does not correlate strongly with its performance in speculative decoding. Based on these insights we explore a new design space for draft models and design hardware-efficient draft models for speculative decoding. Our newly designed draft model for LLaMA-65B can provide 111% higher throughput than existing draft models and can generalize further to the LLaMA-2 model family and supervised fine-tuned models.
Related papers
- DuoDecoding: Hardware-aware Heterogeneous Speculative Decoding with Dynamic Multi-Sequence Drafting [59.57151419673759]
Speculative decoding presents a draft-then-verify framework that reduces generation latency while maintaining output distribution fidelity.
We propose DuoDecoding, a novel approach that strategically deploys the draft and target models on the CPU and GPU respectively.
Our method incorporates a hardware-aware optimal draft budget to minimize idle times and employs dynamic multi-sequence drafting to enhance draft quality.
arXiv Detail & Related papers (2025-03-02T08:27:48Z) - Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - ParallelSpec: Parallel Drafter for Efficient Speculative Decoding [62.68430939686566]
We present ParallelSpec, an alternative to auto-regressive drafting strategies in state-of-the-art speculative decoding approaches.
In contrast to auto-regressive drafting in the speculative stage, we train a parallel drafter to serve as an efficient speculative model.
arXiv Detail & Related papers (2024-10-08T01:05:08Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - On Speculative Decoding for Multimodal Large Language Models [11.245862832561176]
Inference with Multimodal Large Language Models (MLLMs) is slow due to their large-language-model backbone.
We show that a language-only model can serve as a good draft model for speculative decoding with LLaVA 7B.
arXiv Detail & Related papers (2024-04-13T00:02:36Z) - Direct Alignment of Draft Model for Speculative Decoding with Chat-Fine-Tuned LLMs [11.245862832561176]
Training a high-quality draft model is required to enable inference acceleration via speculative decoding.
We train Llama 2 Chat Drafter 115M, a draft model for Llama 2 Chat 7B or larger, with only 1.64% of the original size.
Our results show that Llama 2 Chat Drafter 115M with speculative decoding achieves up to 2.3 block efficiency and 2.4$times$ speed-up.
arXiv Detail & Related papers (2024-02-29T19:55:06Z) - GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative
Decoding [81.01996600734616]
We introduce GliDe and CaPE, two low-hassle modifications to vanilla speculative decoding.
GliDe is a modified draft model architecture that reuses the cached keys and values from the target LLM.
We will release our code, data, and the trained draft models.
arXiv Detail & Related papers (2024-02-03T08:44:11Z) - Multi-Candidate Speculative Decoding [82.05519287513444]
Large language models have shown impressive capabilities across a variety of NLP tasks, yet their generating text autoregressively is time-consuming.
One way to speed them up is speculative decoding, which generates candidate segments from a fast draft model that is then verified in parallel by the target model.
This paper proposes sampling multiple candidates from a draft model and then organising them in batches for verification.
We design algorithms for efficient multi-candidate verification while maintaining the distribution of the target model.
arXiv Detail & Related papers (2024-01-12T17:15:23Z) - DistillSpec: Improving Speculative Decoding via Knowledge Distillation [70.61777015900272]
Speculative decoding (SD) accelerates large language model inference by employing a faster draft model for generating multiple tokens.
We propose DistillSpec that uses knowledge distillation to better align the draft model with the target model, before applying SD.
We show that DistillSpec yields impressive 10 - 45% speedups over standard SD on a range of standard benchmarks.
arXiv Detail & Related papers (2023-10-12T16:21:04Z) - Online Speculative Decoding [34.987825705622555]
We introduce online speculative decoding to accelerate the inference of large language models.
The main idea is to continuously update the (multiple) draft model(s) on observed user query data.
We develop a prototype of online speculative decoding based on knowledge distillation and evaluate it using both synthetic and real query data.
arXiv Detail & Related papers (2023-10-11T04:03:42Z) - Contrastive Decoding Improves Reasoning in Large Language Models [55.16503283583076]
We show that Contrastive Decoding achieves large out-of-the-box improvements over greedy decoding on a variety of reasoning tasks.
We show that Contrastive Decoding leads LLaMA-65B to outperform LLaMA 2, GPT-3.5 and PaLM 2-L on the HellaSwag commonsense reasoning benchmark.
arXiv Detail & Related papers (2023-09-17T00:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.