Hardware Trojans in Quantum Circuits, Their Impacts, and Defense
- URL: http://arxiv.org/abs/2402.01552v1
- Date: Fri, 2 Feb 2024 16:44:52 GMT
- Title: Hardware Trojans in Quantum Circuits, Their Impacts, and Defense
- Authors: Rupshali Roy, Subrata Das, Swaroop Ghosh,
- Abstract summary: Circuits with a short depth and lower gate count can yield the correct solution more often than the variant with a higher gate count and depth.
Many 3rd party compilers are being developed for lower compilation time, reduced circuit depth, and lower gate count for large quantum circuits.
- Score: 2.089191490381739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The reliability of the outcome of a quantum circuit in near-term noisy quantum computers depends on the gate count and depth for a given problem. Circuits with a short depth and lower gate count can yield the correct solution more often than the variant with a higher gate count and depth. To work successfully for Noisy Intermediate Scale Quantum (NISQ) computers, quantum circuits need to be optimized efficiently using a compiler that decomposes high-level gates to native gates of the hardware. Many 3rd party compilers are being developed for lower compilation time, reduced circuit depth, and lower gate count for large quantum circuits. Such compilers, or even a specific release version of a compiler that is otherwise trustworthy, may be unreliable and give rise to security risks such as insertion of a quantum trojan during compilation that evades detection due to the lack of a golden/Oracle model in quantum computing. Trojans may corrupt the functionality to give flipped probabilities of basis states, or result in a lower probability of correct basis states in the output. In this paper, we investigate and discuss the impact of a single qubit Trojan (we have chosen a Hadamard gate and a NOT gate) inserted one at a time at various locations in benchmark quantum circuits without changing the the depth of the circuit. Results indicate an average of 16.18% degradation for the Hadamard Trojan without noise, and 7.78% with noise. For the NOT Trojan (with noise) there is 14.6% degradation over all possible inputs. We then discuss the detection of such Trojans in a quantum circuit using CNN-based classifier achieving an accuracy of 90%.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color
code [0.0]
We observe improved performance for encoded circuits implementing non-Clifford gates.
Our results illustrate the potential of using codes with quantum gates to implement non-trivial algorithms.
arXiv Detail & Related papers (2023-09-15T18:00:02Z) - TrojanNet: Detecting Trojans in Quantum Circuits using Machine Learning [5.444459446244819]
TrojanNet is a novel approach to enhance the security of quantum circuits by detecting and classifying Trojan-inserted circuits.
We generate 12 diverse datasets by introducing variations in Trojan gate types, the number of gates, insertion locations, and compilers.
Experimental results showcase an average accuracy of 98.80% and an average F1-score of 98.53% in effectively detecting and classifying Trojan-inserted QAOA circuits.
arXiv Detail & Related papers (2023-06-29T05:56:05Z) - Randomized Reversible Gate-Based Obfuscation for Secured Compilation of
Quantum Circuit [5.444459446244819]
We propose an obfuscation technique for quantum circuits using reversible gates to protect them from such attacks during compilation.
Our method achieves TVD of up to 1.92 and performs at least 2X better than a previously reported obfuscation method.
arXiv Detail & Related papers (2023-05-02T00:24:34Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Towards Demonstrating Fault Tolerance in Small Circuits Using Bacon-Shor
Codes [5.352699766206807]
We study a next step - fault-tolerantly implementing quantum circuits.
We compute pseudo-thresholds for the Pauli error rate $p$ in a depolarizing noise model.
We see that multiple rounds of stabilizer measurements give an improvement over performing a single round at the end.
arXiv Detail & Related papers (2021-08-04T14:24:14Z) - A Quantum Circuit Obfuscation Methodology for Security and Privacy [1.7324358447544175]
Several 3rd party compilers are evolving to offer improved performance for large quantum circuits.
This could lead to an adversary to Reverse Engineer (RE) the quantum circuit for extracting sensitive aspects.
We propose obfuscation of quantum circuits to hide the functionality.
arXiv Detail & Related papers (2021-04-13T05:09:45Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.