"Which LLM should I use?": Evaluating LLMs for tasks performed by Undergraduate Computer Science Students
- URL: http://arxiv.org/abs/2402.01687v2
- Date: Wed, 3 Apr 2024 14:19:44 GMT
- Title: "Which LLM should I use?": Evaluating LLMs for tasks performed by Undergraduate Computer Science Students
- Authors: Vibhor Agarwal, Madhav Krishan Garg, Sahiti Dharmavaram, Dhruv Kumar,
- Abstract summary: This study evaluates the effectiveness of large language models (LLMs) in performing tasks common among undergraduate computer science students.
Our research systematically assesses some of the publicly available LLMs such as Google Bard, ChatGPT(3.5), GitHub Copilot Chat, and Microsoft Copilot Chat.
- Score: 2.6043678412433713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study evaluates the effectiveness of various large language models (LLMs) in performing tasks common among undergraduate computer science students. Although a number of research studies in the computing education community have explored the possibility of using LLMs for a variety of tasks, there is a lack of comprehensive research comparing different LLMs and evaluating which LLMs are most effective for different tasks. Our research systematically assesses some of the publicly available LLMs such as Google Bard, ChatGPT(3.5), GitHub Copilot Chat, and Microsoft Copilot across diverse tasks commonly encountered by undergraduate computer science students in India. These tasks include code explanation and documentation, solving class assignments, technical interview preparation, learning new concepts and frameworks, and email writing. Evaluation for these tasks was carried out by pre-final year and final year undergraduate computer science students and provides insights into the models' strengths and limitations. This study aims to guide students as well as instructors in selecting suitable LLMs for any specific task and offers valuable insights on how LLMs can be used constructively by students and instructors.
Related papers
- When Search Engine Services meet Large Language Models: Visions and Challenges [53.32948540004658]
This paper conducts an in-depth examination of how integrating Large Language Models with search engines can mutually benefit both technologies.
We focus on two main areas: using search engines to improve LLMs (Search4LLM) and enhancing search engine functions using LLMs (LLM4Search)
arXiv Detail & Related papers (2024-06-28T03:52:13Z) - SciEx: Benchmarking Large Language Models on Scientific Exams with Human Expert Grading and Automatic Grading [100.02175403852253]
One common use of Large Language Models (LLMs) is performing tasks on scientific topics.
Inspired by the way university students are evaluated on such tasks, we propose SciEx - a benchmark consisting of university computer science exam questions.
We evaluate the performance of various state-of-the-art LLMs on our new benchmark.
arXiv Detail & Related papers (2024-06-14T21:52:21Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning.
The extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry.
This survey provides a comprehensive and systematic review of the current state of efficient MLLMs.
arXiv Detail & Related papers (2024-05-17T12:37:10Z) - CS1-LLM: Integrating LLMs into CS1 Instruction [0.6282171844772422]
This experience report describes a CS1 course at a large research-intensive university that fully embraces the use of Large Language Models.
To incorporate the LLMs, the course was intentionally altered to reduce emphasis on syntax and writing code from scratch.
Students were given three large, open-ended projects in three separate domains that allowed them to showcase their creativity.
arXiv Detail & Related papers (2024-04-17T14:44:28Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
This study examines the use of large language models (LLMs) by undergraduate and graduate students for programming assignments in advanced computing classes.
We conducted a comprehensive analysis involving 411 students from a Distributed Systems class at an Indian university.
arXiv Detail & Related papers (2024-04-06T12:06:56Z) - An Exploratory Study on Upper-Level Computing Students' Use of Large Language Models as Tools in a Semester-Long Project [2.7325338323814328]
The purpose of this study is to explore computing students' experiences and approaches to using LLMs during a semester-long software engineering project.
We collected data from a senior-level software engineering course at Purdue University.
We analyzed the data to identify themes related to students' usage patterns and learning outcomes.
arXiv Detail & Related papers (2024-03-27T15:21:58Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s)
In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base.
Our findings suggest that LLMs can play a crucial role in the early stages of software development.
arXiv Detail & Related papers (2024-01-29T14:32:32Z) - Calculating Originality of LLM Assisted Source Code [0.0]
We propose a neural network-based tool to determine the original effort (and LLM's contribution) put by students in writing source codes.
Our tool is motivated by minimum description length measures like Kolmogorov complexity.
arXiv Detail & Related papers (2023-07-10T11:30:46Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
Small foundational models can display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data.
In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following.
Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks.
arXiv Detail & Related papers (2023-05-22T16:56:44Z) - Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [48.70557995528463]
This guide aims to provide researchers and practitioners with valuable insights and best practices for working with Large Language Models.
We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios.
arXiv Detail & Related papers (2023-04-26T17:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.