OpenMoE: An Early Effort on Open Mixture-of-Experts Language Models
- URL: http://arxiv.org/abs/2402.01739v2
- Date: Wed, 27 Mar 2024 10:21:24 GMT
- Title: OpenMoE: An Early Effort on Open Mixture-of-Experts Language Models
- Authors: Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, Yang You,
- Abstract summary: We release OpenMoE, a series of fully open-sourced and reproducible decoder-only Mixture-of-Experts (MoE) based large language models (LLMs)
Our investigation confirms that MoE-based LLMs can offer a more favorable cost-effectiveness trade-off than dense LLMs.
We find that routing decisions in MoE models are predominantly based on token IDs, with minimal context relevance.
- Score: 44.848642930797155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To help the open-source community have a better understanding of Mixture-of-Experts (MoE) based large language models (LLMs), we train and release OpenMoE, a series of fully open-sourced and reproducible decoder-only MoE LLMs, ranging from 650M to 34B parameters and trained on up to over 1T tokens. Our investigation confirms that MoE-based LLMs can offer a more favorable cost-effectiveness trade-off than dense LLMs, highlighting the potential effectiveness for future LLM development. One more important contribution of this study is an in-depth analysis of the routing mechanisms within our OpenMoE models, leading to three significant findings: Context-Independent Specialization, Early Routing Learning, and Drop-towards-the-End. We discovered that routing decisions in MoE models are predominantly based on token IDs, with minimal context relevance. The token-to-expert assignments are determined early in the pre-training phase and remain largely unchanged. This imperfect routing can result in performance degradation, particularly in sequential tasks like multi-turn conversations, where tokens appearing later in a sequence are more likely to be dropped. Finally, we rethink our design based on the above-mentioned observations and analysis. To facilitate future MoE LLM development, we propose potential strategies for mitigating the issues we found and further improving off-the-shelf MoE LLM designs.
Related papers
- A Survey on Mixture of Experts [11.801185267119298]
The mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal overhead.
MoE has emerged as an effective method for substantially scaling up model capacity with minimal overhead.
This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE.
arXiv Detail & Related papers (2024-06-26T16:34:33Z) - MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.31735321970481]
We open-source MAP-Neo, a bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens.
Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs.
arXiv Detail & Related papers (2024-05-29T17:57:16Z) - Found in the Middle: How Language Models Use Long Contexts Better via
Plug-and-Play Positional Encoding [78.36702055076456]
This paper introduces Multi-scale Positional.
(Ms-PoE) which is a simple yet effective plug-and-play approach to enhance the capacity of.
LLMs to handle relevant information located in the middle of the context.
arXiv Detail & Related papers (2024-03-05T04:58:37Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.