(A)I Am Not a Lawyer, But...: Engaging Legal Experts towards Responsible LLM Policies for Legal Advice
- URL: http://arxiv.org/abs/2402.01864v2
- Date: Fri, 3 May 2024 07:32:34 GMT
- Title: (A)I Am Not a Lawyer, But...: Engaging Legal Experts towards Responsible LLM Policies for Legal Advice
- Authors: Inyoung Cheong, King Xia, K. J. Kevin Feng, Quan Ze Chen, Amy X. Zhang,
- Abstract summary: Large language models (LLMs) are increasingly capable of providing users with advice in a wide range of professional domains, including legal advice.
We conducted workshops with 20 legal experts using methods inspired by case-based reasoning.
Our findings reveal novel legal considerations, such as unauthorized practice of law, confidentiality, and liability for inaccurate advice.
- Score: 8.48013392781081
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) are increasingly capable of providing users with advice in a wide range of professional domains, including legal advice. However, relying on LLMs for legal queries raises concerns due to the significant expertise required and the potential real-world consequences of the advice. To explore \textit{when} and \textit{why} LLMs should or should not provide advice to users, we conducted workshops with 20 legal experts using methods inspired by case-based reasoning. The provided realistic queries ("cases") allowed experts to examine granular, situation-specific concerns and overarching technical and legal constraints, producing a concrete set of contextual considerations for LLM developers. By synthesizing the factors that impacted LLM response appropriateness, we present a 4-dimension framework: (1) User attributes and behaviors, (2) Nature of queries, (3) AI capabilities, and (4) Social impacts. We share experts' recommendations for LLM response strategies, which center around helping users identify `right questions to ask' and relevant information rather than providing definitive legal judgments. Our findings reveal novel legal considerations, such as unauthorized practice of law, confidentiality, and liability for inaccurate advice, that have been overlooked in the literature. The case-based deliberation method enabled us to elicit fine-grained, practice-informed insights that surpass those from de-contextualized surveys or speculative principles. These findings underscore the applicability of our method for translating domain-specific professional knowledge and practices into policies that can guide LLM behavior in a more responsible direction.
Related papers
- Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
Large Language Models (LLMs) could struggle to fully understand legal theories and perform legal reasoning tasks.
We introduce a challenging task (confusing charge prediction) to better evaluate LLMs' understanding of legal theories and reasoning capabilities.
We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability.
arXiv Detail & Related papers (2024-10-03T14:15:00Z) - ELLA: Empowering LLMs for Interpretable, Accurate and Informative Legal Advice [26.743016561520506]
ELLA is a tool for bf Empowering bf LLMs for interpretable, accurate, and informative bf Legal bf Advice.
arXiv Detail & Related papers (2024-08-13T18:12:00Z) - LawLuo: A Chinese Law Firm Co-run by LLM Agents [1.9857357818932064]
Large Language Models (LLMs) deliver legal consultation services to users without a legal background.
Existing Chinese legal LLMs limit interaction to a single model-user dialogue.
We propose a novel legal dialogue framework that leverages the collaborative capabilities of multiple LLM agents, termed LawLuo.
arXiv Detail & Related papers (2024-07-23T07:40:41Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
Knowledge documents for large language models (LLMs) may conflict with the memory of LLMs due to outdated or incorrect knowledge.
We construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering.
arXiv Detail & Related papers (2024-04-04T16:40:11Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
General and legal domain LLMs have demonstrated strong performance in various tasks of LegalAI.
We are the first to build the Chinese legal LLMs benchmark LAiW, based on the logic of legal practice.
arXiv Detail & Related papers (2023-10-09T11:19:55Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.