Neural Scaling Laws on Graphs
- URL: http://arxiv.org/abs/2402.02054v2
- Date: Sun, 9 Jun 2024 20:49:33 GMT
- Title: Neural Scaling Laws on Graphs
- Authors: Jingzhe Liu, Haitao Mao, Zhikai Chen, Tong Zhao, Neil Shah, Jiliang Tang,
- Abstract summary: We study neural scaling laws on graphs from both model and data perspectives.
For model scaling, we investigate the phenomenon of scaling law collapse and identify overfitting as the potential reason.
For data scaling, we suggest that the number of graphs can not effectively metric the graph data volume in scaling law since the sizes of different graphs are highly irregular.
- Score: 54.435688297561015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep graph models (e.g., graph neural networks and graph transformers) have become important techniques for leveraging knowledge across various types of graphs. Yet, the scaling properties of deep graph models have not been systematically investigated, casting doubt on the feasibility of achieving large graph models through enlarging the model and dataset sizes. In this work, we delve into neural scaling laws on graphs from both model and data perspectives. We first verify the validity of such laws on graphs, establishing formulations to describe the scaling behaviors. For model scaling, we investigate the phenomenon of scaling law collapse and identify overfitting as the potential reason. Moreover, we reveal that the model depth of deep graph models can impact the model scaling behaviors, which differ from observations in other domains such as CV and NLP. For data scaling, we suggest that the number of graphs can not effectively metric the graph data volume in scaling law since the sizes of different graphs are highly irregular. Instead, we reform the data scaling law with the number of edges as the metric to address the irregular graph sizes. We further demonstrate the reformed law offers a unified view of the data scaling behaviors for various fundamental graph tasks including node classification, link prediction, and graph classification. This work provides valuable insights into neural scaling laws on graphs, which can serve as an essential step toward large graph models.
Related papers
- Scalable Implicit Graphon Learning [25.015678499211404]
We propose a scalable method that combines implicit neural representations (INRs) and graph neural networks (GNNs) to estimate a graphon from observed graphs.
We evaluate SIGL in synthetic and real-world graphs, showing that it outperforms existing methods and scales effectively to larger graphs.
arXiv Detail & Related papers (2024-10-22T22:44:24Z) - Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection [30.618065157205507]
We propose a novel approach, Motif-consistent Counterfactuals with Adversarial Refinement (MotifCAR) for graph-level anomaly detection.
The model combines the motif of one graph, the core subgraph containing the identification (category) information, and the contextual subgraph of another graph to produce a raw counterfactual graph.
MotifCAR can generate high-quality counterfactual graphs.
arXiv Detail & Related papers (2024-07-18T08:04:57Z) - Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help
Multiple Graph Applications [38.83545631999851]
We propose a framework of graph-aware language model pre-training on a large graph corpus.
We conduct experiments on Amazon's real internal datasets and large public datasets.
arXiv Detail & Related papers (2023-06-05T04:46:44Z) - Probing Graph Representations [77.7361299039905]
We use a probing framework to quantify the amount of meaningful information captured in graph representations.
Our findings on molecular datasets show the potential of probing for understanding the inductive biases of graph-based models.
We advocate for probing as a useful diagnostic tool for evaluating graph-based models.
arXiv Detail & Related papers (2023-03-07T14:58:18Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Graph Coarsening with Neural Networks [8.407217618651536]
We propose a framework for measuring the quality of coarsening algorithm and show that depending on the goal, we need to carefully choose the Laplace operator on the coarse graph.
Motivated by the observation that the current choice of edge weight for the coarse graph may be sub-optimal, we parametrize the weight assignment map with graph neural networks and train it to improve the coarsening quality in an unsupervised way.
arXiv Detail & Related papers (2021-02-02T06:50:07Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.