Translation Errors Significantly Impact Low-Resource Languages in
Cross-Lingual Learning
- URL: http://arxiv.org/abs/2402.02080v1
- Date: Sat, 3 Feb 2024 08:22:51 GMT
- Title: Translation Errors Significantly Impact Low-Resource Languages in
Cross-Lingual Learning
- Authors: Ashish Sunil Agrawal, Barah Fazili, Preethi Jyothi
- Abstract summary: In this work, we find that translation inconsistencies do exist and they disproportionally impact low-resource languages in XNLI.
To identify such inconsistencies, we propose measuring the gap in performance between zero-shot evaluations on the human-translated and machine-translated target text.
We also corroborate that translation errors exist for two target languages, namely Hindi and Urdu, by doing a manual reannotation of human-translated test instances.
- Score: 26.49647954587193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popular benchmarks (e.g., XNLI) used to evaluate cross-lingual language
understanding consist of parallel versions of English evaluation sets in
multiple target languages created with the help of professional translators.
When creating such parallel data, it is critical to ensure high-quality
translations for all target languages for an accurate characterization of
cross-lingual transfer. In this work, we find that translation inconsistencies
do exist and interestingly they disproportionally impact low-resource languages
in XNLI. To identify such inconsistencies, we propose measuring the gap in
performance between zero-shot evaluations on the human-translated and
machine-translated target text across multiple target languages; relatively
large gaps are indicative of translation errors. We also corroborate that
translation errors exist for two target languages, namely Hindi and Urdu, by
doing a manual reannotation of human-translated test instances in these two
languages and finding poor agreement with the original English labels these
instances were supposed to inherit.
Related papers
- A Comparative Study of Translation Bias and Accuracy in Multilingual Large Language Models for Cross-Language Claim Verification [1.566834021297545]
This study systematically evaluates translation bias and the effectiveness of Large Language Models for cross-lingual claim verification.
We investigate two distinct translation methods: pre-translation and self-translation.
Our findings reveal that low-resource languages exhibit significantly lower accuracy in direct inference due to underrepresentation.
arXiv Detail & Related papers (2024-10-14T09:02:42Z) - A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
This study focuses on the case of English-Marathi language pairs, where existing datasets are notably noisy.
To mitigate the impact of data quality issues, we propose a data filtering approach based on cross-lingual sentence representations.
Results demonstrate a significant improvement in translation quality over the baseline post-filtering with IndicSBERT.
arXiv Detail & Related papers (2024-09-04T13:49:45Z) - Is It Good Data for Multilingual Instruction Tuning or Just Bad Multilingual Evaluation for Large Language Models? [17.011882550422452]
It is unknown whether the nature of the instruction data has an impact on the model output.
It is questionable whether translated test sets can capture such nuances.
We show that native or generation benchmarks reveal a notable difference between native and translated instruction data.
arXiv Detail & Related papers (2024-06-18T17:43:47Z) - Decomposed Prompting for Machine Translation Between Related Languages
using Large Language Models [55.35106713257871]
We introduce DecoMT, a novel approach of few-shot prompting that decomposes the translation process into a sequence of word chunk translations.
We show that DecoMT outperforms the strong few-shot prompting BLOOM model with an average improvement of 8 chrF++ scores across the examined languages.
arXiv Detail & Related papers (2023-05-22T14:52:47Z) - MultiTACRED: A Multilingual Version of the TAC Relation Extraction
Dataset [6.7839993945546215]
We introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families.
We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models.
We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts.
arXiv Detail & Related papers (2023-05-08T09:48:21Z) - Large language models effectively leverage document-level context for
literary translation, but critical errors persist [32.54546652197316]
Large language models (LLMs) are competitive with the state of the art on a wide range of sentence-level translation datasets.
We show through a rigorous human evaluation that asking the Gpt-3.5 (text-davinci-003) LLM to translate an entire literary paragraph results in higher-quality translations.
arXiv Detail & Related papers (2023-04-06T17:27:45Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Zero-Shot Cross-lingual Semantic Parsing [56.95036511882921]
We study cross-lingual semantic parsing as a zero-shot problem without parallel data for 7 test languages.
We propose a multi-task encoder-decoder model to transfer parsing knowledge to additional languages using only English-Logical form paired data.
Our system frames zero-shot parsing as a latent-space alignment problem and finds that pre-trained models can be improved to generate logical forms with minimal cross-lingual transfer penalty.
arXiv Detail & Related papers (2021-04-15T16:08:43Z) - Inducing Language-Agnostic Multilingual Representations [61.97381112847459]
Cross-lingual representations have the potential to make NLP techniques available to the vast majority of languages in the world.
We examine three approaches for this: (i) re-aligning the vector spaces of target languages to a pivot source language; (ii) removing language-specific means and variances, which yields better discriminativeness of embeddings as a by-product; and (iii) increasing input similarity across languages by removing morphological contractions and sentence reordering.
arXiv Detail & Related papers (2020-08-20T17:58:56Z) - Self-Attention with Cross-Lingual Position Representation [112.05807284056337]
Position encoding (PE) is used to preserve the word order information for natural language processing tasks, generating fixed position indices for input sequences.
Due to word order divergences in different languages, modeling the cross-lingual positional relationships might help SANs tackle this problem.
We augment SANs with emphcross-lingual position representations to model the bilingually aware latent structure for the input sentence.
arXiv Detail & Related papers (2020-04-28T05:23:43Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
We show that machine translation can introduce subtle artifacts that have a notable impact in existing cross-lingual models.
In natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them.
We also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.
arXiv Detail & Related papers (2020-04-09T17:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.