CodeAgent: Autonomous Communicative Agents for Code Review
- URL: http://arxiv.org/abs/2402.02172v5
- Date: Tue, 24 Sep 2024 20:40:43 GMT
- Title: CodeAgent: Autonomous Communicative Agents for Code Review
- Authors: Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li, Saad Ezzini, Haoye Tian, Jacques Klein, Tegawende F. Bissyande,
- Abstract summary: This work introduces tool, a novel multi-agent Large Language Model (LLM) system for code review automation.
CodeAgent incorporates a supervisory agent, QA-Checker, to ensure that all the agents' contributions address the initial review question.
Results demonstrate CodeAgent's effectiveness, contributing to a new state-of-the-art in code review automation.
- Score: 12.163258651539236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code review, which aims at ensuring the overall quality and reliability of software, is a cornerstone of software development. Unfortunately, while crucial, Code review is a labor-intensive process that the research community is looking to automate. Existing automated methods rely on single input-output generative models and thus generally struggle to emulate the collaborative nature of code review. This work introduces \tool{}, a novel multi-agent Large Language Model (LLM) system for code review automation. CodeAgent incorporates a supervisory agent, QA-Checker, to ensure that all the agents' contributions address the initial review question. We evaluated CodeAgent on critical code review tasks: (1) detect inconsistencies between code changes and commit messages, (2) identify vulnerability introductions, (3) validate code style adherence, and (4) suggest code revision. The results demonstrate CodeAgent's effectiveness, contributing to a new state-of-the-art in code review automation. Our data and code are publicly available (\url{https://github.com/Code4Agent/codeagent}).
Related papers
- RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCode is a benchmark for risky code execution and generation.
RedCode-Exec provides challenging prompts that could lead to risky code execution.
RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions.
arXiv Detail & Related papers (2024-11-12T13:30:06Z) - Evaluating Software Development Agents: Patch Patterns, Code Quality, and Issue Complexity in Real-World GitHub Scenarios [13.949319911378826]
This study evaluated 4,892 patches from 10 top-ranked agents on 500 real-world GitHub issues.
No single agent dominated, with 170 issues unresolved, indicating room for improvement.
Most agents maintained code reliability and security, avoiding new bugs or vulnerabilities.
Some agents increased code complexity, many reduced code duplication and minimized code smells.
arXiv Detail & Related papers (2024-10-16T11:33:57Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Sifting through the Chaff: On Utilizing Execution Feedback for Ranking the Generated Code Candidates [46.74037090843497]
Large Language Models (LLMs) are transforming the way developers approach programming by automatically generating code based on natural language descriptions.
This paper puts forward RankEF, an innovative approach for code ranking that leverages execution feedback.
Experiments on three code generation benchmarks demonstrate that RankEF significantly outperforms the state-of-the-art CodeRanker.
arXiv Detail & Related papers (2024-08-26T01:48:57Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges [41.038584732889895]
Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks.
Our research pivots towards evaluating LLMs in a more realistic setting -- real-world repo-level code generation.
We present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation.
arXiv Detail & Related papers (2024-01-14T18:12:03Z) - Using AI/ML to Find and Remediate Enterprise Secrets in Code & Document
Sharing Platforms [2.9248916859490173]
We introduce a new challenge to the software development community: 1) leveraging AI to accurately detect and flag up secrets in code and on popular document sharing platforms.
We introduce two baseline AI models that have good detection performance and propose an automatic mechanism for remediating secrets found in code.
arXiv Detail & Related papers (2024-01-03T14:15:25Z) - AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and Optimisation [11.155351560550853]
This paper introduces Multi-Agent Assistant Code Generation (AgentCoder)
AgentCoder is a novel solution comprising a multi-agent framework with specialized agents: the programmer agent, the test designer agent, and the test executor agent.
Our experiments on 9 code generation models and 12 enhancement approaches showcase AgentCoder's superior performance over existing code generation models.
arXiv Detail & Related papers (2023-12-20T13:22:41Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.