Rethinking the Starting Point: Collaborative Pre-Training for Federated Downstream Tasks
- URL: http://arxiv.org/abs/2402.02225v3
- Date: Fri, 7 Jun 2024 02:58:10 GMT
- Title: Rethinking the Starting Point: Collaborative Pre-Training for Federated Downstream Tasks
- Authors: Yun-Wei Chu, Dong-Jun Han, Seyyedali Hosseinalipour, Christopher G. Brinton,
- Abstract summary: CoPreFL is a model-agnostic meta-learning (MAML) procedure that tailors the global model to closely mimic heterogeneous and unseen FL scenarios.
Our MAML procedure incorporates performance variance into the meta-objective function, balancing performance across clients.
We demonstrate that CoPreFL obtains significant improvements in both average accuracy and variance across arbitrary downstream FL tasks.
- Score: 21.842345900168525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A few recent studies have demonstrated that leveraging centrally pre-trained models can offer advantageous initializations for federated learning (FL). However, existing pre-training methods do not generalize well when faced with an arbitrary set of downstream FL tasks. Specifically, they often (i) achieve limited average accuracy, particularly when there are unseen downstream labels, and (ii) result in significant accuracy variance, failing to provide a balanced performance across clients. To address these challenges, we propose CoPreFL, a collaborative/distributed pre-training approach which provides a robust initialization for downstream FL tasks. The key idea of CoPreFL is a model-agnostic meta-learning (MAML) procedure that tailors the global model to closely mimic heterogeneous and unseen FL scenarios, resulting in a pre-trained model that is rapidly adaptable to arbitrary FL tasks. Our MAML procedure incorporates performance variance into the meta-objective function, balancing performance across clients rather than solely optimizing for accuracy. Through extensive experiments, we demonstrate that CoPreFL obtains significant improvements in both average accuracy and variance across arbitrary downstream FL tasks with unseen/seen labels, compared with various pre-training baselines. We also show how CoPreFL is compatible with different well-known FL algorithms applied by the downstream tasks, enhancing performance in each case.
Related papers
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Importance of Smoothness Induced by Optimizers in FL4ASR: Towards
Understanding Federated Learning for End-to-End ASR [12.108696564200052]
We start by training End-to-End Automatic Speech Recognition (ASR) models using Federated Learning (FL)
We examine the fundamental considerations that can be pivotal in minimizing the performance gap in terms of word error rate between models trained using FL versus their centralized counterpart.
arXiv Detail & Related papers (2023-09-22T17:23:01Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Critical Learning Periods in Federated Learning [11.138980572551066]
Federated learning (FL) is a popular technique to train machine learning (ML) models with decentralized data.
We show that the final test accuracy of FL is dramatically affected by the early phase of the training process.
arXiv Detail & Related papers (2021-09-12T21:06:07Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.