Momentum Does Not Reduce Stochastic Noise in Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2402.02325v4
- Date: Mon, 03 Feb 2025 16:18:56 GMT
- Title: Momentum Does Not Reduce Stochastic Noise in Stochastic Gradient Descent
- Authors: Naoki Sato, Hideaki Iiduka,
- Abstract summary: In neural deep networks, gradient descent (SGD) with momentum is said to converge faster and have better generalizability than SGD without momentum.
In particular, adding momentum is thought to reduce this batch noise.
We analyzed the effect of search direction noise, which is noise defined as the error between the search direction and the steepest descent direction.
- Score: 0.6906005491572401
- License:
- Abstract: For nonconvex objective functions, including those found in training deep neural networks, stochastic gradient descent (SGD) with momentum is said to converge faster and have better generalizability than SGD without momentum. In particular, adding momentum is thought to reduce stochastic noise. To verify this, we estimated the magnitude of gradient noise by using convergence analysis and an optimal batch size estimation formula and found that momentum does not reduce gradient noise. We also analyzed the effect of search direction noise, which is stochastic noise defined as the error between the search direction of the optimizer and the steepest descent direction, and found that it inherently smooths the objective function and that momentum does not reduce search direction noise either. Finally, an analysis of the degree of smoothing introduced by search direction noise revealed that adding momentum offers limited advantage to SGD.
Related papers
- Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - The Marginal Value of Momentum for Small Learning Rate SGD [20.606430391298815]
Momentum is known to accelerate the convergence of gradient descent in strongly convex settings without gradient noise regimes.
Experiments show that momentum indeed has limited benefits for both optimization and generalization in practical training where the optimal learning rate is not very large.
arXiv Detail & Related papers (2023-07-27T21:01:26Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Computing the Variance of Shuffling Stochastic Gradient Algorithms via
Power Spectral Density Analysis [6.497816402045099]
Two common alternatives to gradient descent (SGD) with theoretical benefits are random reshuffling (SGDRR) and shuffle-once (SGD-SO)
We study the stationary variances of SGD, SGDRR and SGD-SO, whose leading terms decrease in this order, and obtain simple approximations.
arXiv Detail & Related papers (2022-06-01T17:08:04Z) - Revisiting the Characteristics of Stochastic Gradient Noise and Dynamics [25.95229631113089]
We show that the gradient noise possesses finite variance, and therefore the Central Limit Theorem (CLT) applies.
We then demonstrate the existence of the steady-state distribution of gradient descent and approximate the distribution at a small learning rate.
arXiv Detail & Related papers (2021-09-20T20:39:14Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Stochastic gradient descent with noise of machine learning type. Part
II: Continuous time analysis [0.0]
We show that in a certain noise regime, the optimization algorithm prefers 'flat' minima of the objective function in a sense which is different from the flat minimum selection of continuous time SGD with homogeneous noise.
arXiv Detail & Related papers (2021-06-04T16:34:32Z) - Noise and Fluctuation of Finite Learning Rate Stochastic Gradient
Descent [3.0079490585515343]
gradient descent (SGD) is relatively well understood in the vanishing learning rate regime.
We propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime.
arXiv Detail & Related papers (2020-12-07T12:31:43Z) - Dynamic of Stochastic Gradient Descent with State-Dependent Noise [84.64013284862733]
gradient descent (SGD) and its variants are mainstream methods to train deep neural networks.
We show that the covariance of the noise of SGD in the local region of the local minima is a quadratic function of the state.
We propose a novel power-law dynamic with state-dependent diffusion to approximate the dynamic of SGD.
arXiv Detail & Related papers (2020-06-24T13:34:38Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.