Factuality of Large Language Models: A Survey
- URL: http://arxiv.org/abs/2402.02420v3
- Date: Thu, 31 Oct 2024 04:50:59 GMT
- Title: Factuality of Large Language Models: A Survey
- Authors: Yuxia Wang, Minghan Wang, Muhammad Arslan Manzoor, Fei Liu, Georgi Georgiev, Rocktim Jyoti Das, Preslav Nakov,
- Abstract summary: We critically analyze existing work with the aim to identify the major challenges and their associated causes.
We analyze the obstacles to automated factuality evaluation for open-ended text generation.
- Score: 29.557596701431827
- License:
- Abstract: Large language models (LLMs), especially when instruction-tuned for chat, have become part of our daily lives, freeing people from the process of searching, extracting, and integrating information from multiple sources by offering a straightforward answer to a variety of questions in a single place. Unfortunately, in many cases, LLM responses are factually incorrect, which limits their applicability in real-world scenarios. As a result, research on evaluating and improving the factuality of LLMs has attracted a lot of attention recently. In this survey, we critically analyze existing work with the aim to identify the major challenges and their associated causes, pointing out to potential solutions for improving the factuality of LLMs, and analyzing the obstacles to automated factuality evaluation for open-ended text generation. We further offer an outlook on where future research should go.
Related papers
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions.
We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges.
arXiv Detail & Related papers (2024-09-24T04:14:33Z) - Adversarial Math Word Problem Generation [6.92510069380188]
We propose a new paradigm for ensuring fair evaluation of large language models (LLMs)
We generate adversarial examples which preserve the structure and difficulty of the original questions aimed for assessment, but are unsolvable by LLMs.
We conduct experiments on various open- and closed-source LLMs, quantitatively and qualitatively demonstrating that our method significantly degrades their math problem-solving ability.
arXiv Detail & Related papers (2024-02-27T22:07:52Z) - You don't need a personality test to know these models are unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments [37.03210795084276]
We examine whether the current format of prompting Large Language Models elicits responses in a consistent and robust manner.
Our experiments on 17 different LLMs reveal that even simple perturbations significantly downgrade a model's question-answering ability.
Our results suggest that the currently widespread practice of prompting is insufficient to accurately and reliably capture model perceptions.
arXiv Detail & Related papers (2023-11-16T09:50:53Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
We introduce a benchmark for Factuality Evaluation of large Language Models, referred to as felm.
We collect responses generated from large language models and annotate factuality labels in a fine-grained manner.
Our findings reveal that while retrieval aids factuality evaluation, current LLMs are far from satisfactory to faithfully detect factual errors.
arXiv Detail & Related papers (2023-10-01T17:37:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Investigating the Factual Knowledge Boundary of Large Language Models
with Retrieval Augmentation [91.30946119104111]
We show that large language models (LLMs) possess unwavering confidence in their capabilities to respond to questions.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We also find that LLMs have a propensity to rely on the provided retrieval results when formulating answers.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Assessing Hidden Risks of LLMs: An Empirical Study on Robustness,
Consistency, and Credibility [37.682136465784254]
We conduct over a million queries to the mainstream large language models (LLMs) including ChatGPT, LLaMA, and OPT.
We find that ChatGPT is still capable to yield the correct answer even when the input is polluted at an extreme level.
We propose a novel index associated with a dataset that roughly decides the feasibility of using such data for LLM-involved evaluation.
arXiv Detail & Related papers (2023-05-15T15:44:51Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.