VM-UNet: Vision Mamba UNet for Medical Image Segmentation
- URL: http://arxiv.org/abs/2402.02491v1
- Date: Sun, 4 Feb 2024 13:37:21 GMT
- Title: VM-UNet: Vision Mamba UNet for Medical Image Segmentation
- Authors: Jiacheng Ruan, Suncheng Xiang
- Abstract summary: We propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet)
We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks.
- Score: 3.170171905334503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of medical image segmentation, both CNN-based and
Transformer-based models have been extensively explored. However, CNNs exhibit
limitations in long-range modeling capabilities, whereas Transformers are
hampered by their quadratic computational complexity. Recently, State Space
Models (SSMs), exemplified by Mamba, have emerged as a promising approach. They
not only excel in modeling long-range interactions but also maintain a linear
computational complexity. In this paper, leveraging state space models, we
propose a U-shape architecture model for medical image segmentation, named
Vision Mamba UNet (VM-UNet). Specifically, the Visual State Space (VSS) block
is introduced as the foundation block to capture extensive contextual
information, and an asymmetrical encoder-decoder structure is constructed. We
conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets,
and the results indicate that VM-UNet performs competitively in medical image
segmentation tasks. To our best knowledge, this is the first medical image
segmentation model constructed based on the pure SSM-based model. We aim to
establish a baseline and provide valuable insights for the future development
of more efficient and effective SSM-based segmentation systems. Our code is
available at https://github.com/JCruan519/VM-UNet.
Related papers
- HMT-UNet: A hybird Mamba-Transformer Vision UNet for Medical Image Segmentation [1.5574423250822542]
We propose a U-shape architecture model for medical image segmentation, named Hybird Transformer vision Mamba UNet (HTM-UNet)
We conduct comprehensive experiments on the ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir, CVC-ColonDB, ETIS-Larib PolypDB public datasets and ZD-LCI-GIM private dataset.
arXiv Detail & Related papers (2024-08-21T02:25:14Z) - VM-DDPM: Vision Mamba Diffusion for Medical Image Synthesis [0.8111815974227898]
We propose the Vision Mamba DDPM (VM-DDPM) based on State Space Model (SSM)
To our best knowledge, this is the first medical image synthesis model based on the SSM-CNN hybrid architecture.
Our experimental evaluation on three datasets of different scales, i.e., ACDC, BraTS2018, and ChestXRay, demonstrate that VM-DDPM achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-05-09T10:41:18Z) - VM-UNET-V2 Rethinking Vision Mamba UNet for Medical Image Segmentation [8.278068663433261]
We propose Vison Mamba-UNetV2, inspired by Mamba architecture, to capture contextual information in images.
VM-UNetV2 exhibits competitive performance in medical image segmentation tasks.
We conduct comprehensive experiments on the ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir CVC-ColonDB and ETIS-LaribPolypDB public datasets.
arXiv Detail & Related papers (2024-03-14T08:12:39Z) - LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation [9.862277278217045]
In this paper, we introduce a Large Kernel Vision Mamba U-shape Network, or LKM-UNet, for medical image segmentation.
A distinguishing feature of our LKM-UNet is its utilization of large Mamba kernels, excelling in locally spatial modeling compared to small kernel-based CNNs and Transformers.
Comprehensive experiments demonstrate the feasibility and the effectiveness of using large-size Mamba kernels to achieve large receptive fields.
arXiv Detail & Related papers (2024-03-12T05:34:51Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
We propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability.
Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network.
arXiv Detail & Related papers (2024-02-07T18:33:04Z) - VMamba: Visual State Space Model [92.83984290020891]
VMamba is a vision backbone that works in linear time complexity.
At the core of VMamba lies a stack of Visual State-Space (VSS) blocks with the 2D Selective Scan (SS2D) module.
arXiv Detail & Related papers (2024-01-18T17:55:39Z) - Vision Mamba: Efficient Visual Representation Learning with
Bidirectional State Space Model [51.10876815815515]
We propose a new generic vision backbone with bidirectional Mamba blocks (Vim)
Vim marks the image sequences with position embeddings and compresses the visual representation with bidirectional state space models.
The results demonstrate that Vim is capable of overcoming the computation & memory constraints on performing Transformer-style understanding for high-resolution images.
arXiv Detail & Related papers (2024-01-17T18:56:18Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.