Mixed Noise and Posterior Estimation with Conditional DeepGEM
- URL: http://arxiv.org/abs/2402.02964v2
- Date: Fri, 5 Jul 2024 13:04:10 GMT
- Title: Mixed Noise and Posterior Estimation with Conditional DeepGEM
- Authors: Paul Hagemann, Johannes Hertrich, Maren Casfor, Sebastian Heidenreich, Gabriele Steidl,
- Abstract summary: We develop a novel algorithm for jointly estimating the posterior and the noise parameters in inverse problems.
We show that our model is able to incorporate information from many measurements, unlike previous approaches.
- Score: 1.1650821883155187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by indirect measurements and applications from nanometrology with a mixed noise model, we develop a novel algorithm for jointly estimating the posterior and the noise parameters in Bayesian inverse problems. We propose to solve the problem by an expectation maximization (EM) algorithm. Based on the current noise parameters, we learn in the E-step a conditional normalizing flow that approximates the posterior. In the M-step, we propose to find the noise parameter updates again by an EM algorithm, which has analytical formulas. We compare the training of the conditional normalizing flow with the forward and reverse KL, and show that our model is able to incorporate information from many measurements, unlike previous approaches.
Related papers
- Bayesian Inference of General Noise Model Parameters from Surface Code's Syndrome Statistics [0.0]
We propose general noise model Bayesian inference methods that integrate the surface code's tensor network simulator.
For stationary noise, where the noise parameters are constant and do not change, we propose a method based on the Markov chain Monte Carlo.
For time-varying noise, which is a more realistic situation, we introduce another method based on the sequential Monte Carlo.
arXiv Detail & Related papers (2024-06-13T10:26:04Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Tradeoffs between convergence rate and noise amplification for momentum-based accelerated optimization algorithms [8.669461942767098]
We study momentum-based first-order optimization algorithms in which the iterations are subject to an additive white noise.
For strongly convex quadratic problems, we use the steady-state variance of the error in the optimization variable to quantify noise amplification.
We introduce two parameterized families of algorithms that strike a balance between noise amplification and settling time.
arXiv Detail & Related papers (2022-09-24T04:26:30Z) - Multiview point cloud registration with anisotropic and space-varying
localization noise [1.5499426028105903]
We address the problem of registering multiple point clouds corrupted with high anisotropic localization noise.
Existing methods are based on an implicit assumption of space-invariant isotropic noise.
We show that our noise handling strategy improves significantly the robustness to high levels of anisotropic noise.
arXiv Detail & Related papers (2022-01-03T15:21:24Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Efficient Algorithms for Estimating the Parameters of Mixed Linear
Regression Models [10.164623585528805]
We study the maximum likelihood estimation of the parameters of MLR model when the additive noise has non-Gaussian distribution.
To overcome this issue, we propose a new algorithm based on combining the alternating direction method of multipliers (ADMM) with EM algorithm idea.
arXiv Detail & Related papers (2021-05-12T20:29:03Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z) - Solving Inverse Problems with a Flow-based Noise Model [100.18560761392692]
We study image inverse problems with a normalizing flow prior.
Our formulation views the solution as the maximum a posteriori estimate of the image conditioned on the measurements.
We empirically validate the efficacy of our method on various inverse problems, including compressed sensing with quantized measurements and denoising with highly structured noise patterns.
arXiv Detail & Related papers (2020-03-18T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.