SpecFormer: Guarding Vision Transformer Robustness via Maximum Singular Value Penalization
- URL: http://arxiv.org/abs/2402.03317v2
- Date: Sat, 13 Jul 2024 11:51:46 GMT
- Title: SpecFormer: Guarding Vision Transformer Robustness via Maximum Singular Value Penalization
- Authors: Xixu Hu, Runkai Zheng, Jindong Wang, Cheuk Hang Leung, Qi Wu, Xing Xie,
- Abstract summary: Vision Transformers (ViTs) are increasingly used in computer vision due to their high performance, but their vulnerability to adversarial attacks is a concern.
This study introduces SpecFormer, tailored to fortify ViTs against adversarial attacks, with theoretical underpinnings.
- Score: 39.09638432514626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformers (ViTs) are increasingly used in computer vision due to their high performance, but their vulnerability to adversarial attacks is a concern. Existing methods lack a solid theoretical basis, focusing mainly on empirical training adjustments. This study introduces SpecFormer, tailored to fortify ViTs against adversarial attacks, with theoretical underpinnings. We establish local Lipschitz bounds for the self-attention layer and propose the Maximum Singular Value Penalization (MSVP) to precisely manage these bounds By incorporating MSVP into ViTs' attention layers, we enhance the model's robustness without compromising training efficiency. SpecFormer, the resulting model, outperforms other state-of-the-art models in defending against adversarial attacks, as proven by experiments on CIFAR and ImageNet datasets. Code is released at https://github.com/microsoft/robustlearn.
Related papers
- ViTGuard: Attention-aware Detection against Adversarial Examples for Vision Transformer [8.71614629110101]
We propose ViTGuard as a general detection method for defending Vision Transformer (ViT) models against adversarial attacks.
ViTGuard uses a Masked Autoencoder (MAE) model to recover randomly masked patches from the unmasked regions.
threshold-based detectors leverage distinctive ViT features, including attention maps and classification (token representations) token representations, to distinguish between normal and adversarial samples.
arXiv Detail & Related papers (2024-09-20T18:11:56Z) - Downstream Transfer Attack: Adversarial Attacks on Downstream Models with Pre-trained Vision Transformers [95.22517830759193]
This paper studies the transferability of such an adversarial vulnerability from a pre-trained ViT model to downstream tasks.
We show that DTA achieves an average attack success rate (ASR) exceeding 90%, surpassing existing methods by a huge margin.
arXiv Detail & Related papers (2024-08-03T08:07:03Z) - MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness [31.603115393528746]
Building robust Vision Transformers (ViTs) is highly dependent on dedicated Adversarial Training (AT) strategies.
We provide a novel theoretical Mutual Information (MI) analysis in its autoencoder-based self-supervised pre-training.
We propose a masked autoencoder-based pre-training method, MIMIR, that employs an MI penalty to facilitate the adversarial training of ViTs.
arXiv Detail & Related papers (2023-12-08T10:50:02Z) - Transferable Adversarial Attacks on Vision Transformers with Token
Gradient Regularization [32.908816911260615]
Vision transformers (ViTs) have been successfully deployed in a variety of computer vision tasks, but they are still vulnerable to adversarial samples.
transfer-based attacks use a local model to generate adversarial samples and directly transfer them to attack a target black-box model.
We propose the Token Gradient Regularization (TGR) method to overcome the shortcomings of existing approaches.
arXiv Detail & Related papers (2023-03-28T06:23:17Z) - A Light Recipe to Train Robust Vision Transformers [34.51642006926379]
We show that Vision Transformers (ViTs) can serve as an underlying architecture for improving the robustness of machine learning models against evasion attacks.
We achieve this objective using a custom adversarial training recipe, discovered using rigorous ablation studies on a subset of the ImageNet dataset.
We show that our recipe generalizes to different classes of ViT architectures and large-scale models on full ImageNet-1k.
arXiv Detail & Related papers (2022-09-15T16:00:04Z) - Self-Ensembling Vision Transformer (SEViT) for Robust Medical Image
Classification [4.843654097048771]
Vision Transformers (ViT) are competing to replace Convolutional Neural Networks (CNN) for various computer vision tasks in medical imaging.
Recent works have shown that ViTs are also susceptible to such attacks and suffer significant performance degradation under attack.
We propose a novel self-ensembling method to enhance the robustness of ViT in the presence of adversarial attacks.
arXiv Detail & Related papers (2022-08-04T19:02:24Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Deeper Insights into ViTs Robustness towards Common Corruptions [82.79764218627558]
We investigate how CNN-like architectural designs and CNN-based data augmentation strategies impact on ViTs' robustness towards common corruptions.
We demonstrate that overlapping patch embedding and convolutional Feed-Forward Network (FFN) boost performance on robustness.
We also introduce a novel conditional method enabling input-varied augmentations from two angles.
arXiv Detail & Related papers (2022-04-26T08:22:34Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.