Extending RAIM with a Gaussian Mixture of Opportunistic Information
- URL: http://arxiv.org/abs/2402.03449v1
- Date: Mon, 5 Feb 2024 19:03:18 GMT
- Title: Extending RAIM with a Gaussian Mixture of Opportunistic Information
- Authors: Wenjie Liu, Panos Papadimitratos,
- Abstract summary: Original receiver autonomous integrity monitoring (RAIM) was not designed for securing.
We extend RAIM by incorporating all opportunistic information, i.e., measurements from terrestrial infrastructures and onboard sensors.
The objective is to assess the likelihood of spoofing by analyzing locations derived from extended RAIM solutions.
- Score: 1.9688858888666714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: GNSS are indispensable for various applications, but they are vulnerable to spoofing attacks. The original receiver autonomous integrity monitoring (RAIM) was not designed for securing GNSS. In this context, RAIM was extended with wireless signals, termed signals of opportunity (SOPs), or onboard sensors, typically assumed benign. However, attackers might also manipulate wireless networks, raising the need for a solution that considers untrustworthy SOPs. To address this, we extend RAIM by incorporating all opportunistic information, i.e., measurements from terrestrial infrastructures and onboard sensors, culminating in one function for robust GNSS spoofing detection. The objective is to assess the likelihood of GNSS spoofing by analyzing locations derived from extended RAIM solutions, which include location solutions from GNSS pseudorange subsets and wireless signal subsets of untrusted networks. Our method comprises two pivotal components: subset generation and location fusion. Subsets of ranging information are created and processed through positioning algorithms, producing temporary locations. Onboard sensors provide speed, acceleration, and attitude data, aiding in location filtering based on motion constraints. The filtered locations, modeled with uncertainty, are fused into a composite likelihood function normalized for GNSS spoofing detection. Theoretical assessments of GNSS-only and multi-infrastructure scenarios under uncoordinated and coordinated attacks are conducted. The detection of these attacks is feasible when the number of benign subsets exceeds a specific threshold. A real-world dataset from the Kista area is used for experimental validation. Comparative analysis against baseline methods shows a significant improvement in detection accuracy achieved by our Gaussian Mixture RAIM approach. Moreover, we discuss leveraging RAIM results for plausible location recovery.
Related papers
- Evaluating ML Robustness in GNSS Interference Classification, Characterization \& Localization [42.14439854721613]
Jamming devices present a significant threat by disrupting signals from the global navigation satellite system (GNSS)
The detection of anomalies within frequency snapshots is crucial to counteract these interferences effectively.
This paper introduces an extensive dataset capturing interferences within a large-scale environment including controlled multipath effects.
arXiv Detail & Related papers (2024-09-23T15:20:33Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
This study investigates whether specific GPS signals can easily mislead the multi-agent perception system.
We introduce textscAdvGPS, a method capable of generating adversarial GPS signals which are also stealthy for individual agents within the system.
Our experiments on the OPV2V dataset demonstrate that these attacks substantially undermine the performance of state-of-the-art methods.
arXiv Detail & Related papers (2024-01-30T23:13:41Z) - Experimental Validation of Sensor Fusion-based GNSS Spoofing Attack
Detection Framework for Autonomous Vehicles [5.624009710240032]
We present a sensor fusion-based spoofing attack detection framework for Autonomous Vehicles.
Experiments are conducted in Tuscaloosa, AL, mimicking urban road structures.
Results demonstrate the framework's ability to detect various sophisticated spoofing attacks, even including slow drifting attacks.
arXiv Detail & Related papers (2024-01-02T17:30:46Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Quantum secured LiDAR with Gaussian modulated coherent states [6.207058145190368]
LiDAR systems that rely on classical signals are susceptible to intercept-and-recent spoofing attacks.
We propose a quantum-secured LiDAR protocol that utilizes Gaussian modulated coherent states for both range determination and spoofing attack detection.
arXiv Detail & Related papers (2023-08-23T14:45:39Z) - Deep Attention Recognition for Attack Identification in 5G UAV
scenarios: Novel Architecture and End-to-End Evaluation [3.3253720226707992]
Despite the robust security features inherent in the 5G framework, attackers will still discover ways to disrupt 5G unmanned aerial vehicle (UAV) operations.
We propose Deep Attention Recognition (DAtR) as a solution to identify attacks based on a small deep network embedded in authenticated UAVs.
arXiv Detail & Related papers (2023-03-03T17:10:35Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles [5.579370215490055]
We have developed a prediction-based spoofing attack detection strategy using the long short-term memory (LSTM) model.
Based on the predicted distance traveled between the current location and the immediate future location, a threshold value is established.
Our analysis revealed that the prediction-based spoofed attack detection strategy can successfully detect the attack in real-time.
arXiv Detail & Related papers (2020-10-16T18:26:59Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.