Learning a Decision Tree Algorithm with Transformers
- URL: http://arxiv.org/abs/2402.03774v2
- Date: Fri, 23 Aug 2024 19:56:36 GMT
- Title: Learning a Decision Tree Algorithm with Transformers
- Authors: Yufan Zhuang, Liyuan Liu, Chandan Singh, Jingbo Shang, Jianfeng Gao,
- Abstract summary: We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
- Score: 75.96920867382859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision trees are renowned for their ability to achieve high predictive performance while remaining interpretable, especially on tabular data. Traditionally, they are constructed through recursive algorithms, where they partition the data at every node in a tree. However, identifying a good partition is challenging, as decision trees optimized for local segments may not yield global generalization. To address this, we introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees. Specifically, we fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance. This training enables MetaTree to emulate these algorithms and intelligently adapt its strategy according to the context, thereby achieving superior generalization performance.
Related papers
- Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - Boosting-Based Sequential Meta-Tree Ensemble Construction for Improved
Decision Trees [1.8749305679160366]
A decision tree is one of the most popular approaches in machine learning fields.
A meta-tree is recently proposed to solve the problem of overfitting caused by overly deepened trees.
The meta-tree guarantees statistical optimality based on Bayes decision theory.
arXiv Detail & Related papers (2024-02-09T13:08:21Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
We introduce ViTree, a novel approach for fine-grained visual categorization.
By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions.
This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings.
arXiv Detail & Related papers (2024-01-30T14:32:25Z) - Tree in Tree: from Decision Trees to Decision Graphs [2.2336243882030025]
Tree in Tree decision graph (TnT) is a framework that extends the conventional decision tree to a more generic and powerful directed acyclic graph.
Our proposed model is a novel, more efficient, and accurate alternative to the widely-used decision trees.
arXiv Detail & Related papers (2021-10-01T13:20:05Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Convex Polytope Trees [57.56078843831244]
convex polytope trees (CPT) are proposed to expand the family of decision trees by an interpretable generalization of their decision boundary.
We develop a greedy method to efficiently construct CPT and scalable end-to-end training algorithms for the tree parameters when the tree structure is given.
arXiv Detail & Related papers (2020-10-21T19:38:57Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - Sparsity in Optimal Randomized Classification Trees [3.441021278275805]
We propose a continuous optimization approach to build sparse optimal classification trees, based on oblique cuts.
Both types of sparsity, namely local and global, are modeled by means of regularizations with polyhedral norms.
Unlike greedy approaches, our ability to easily trade in some of our classification accuracy for a gain in global sparsity is shown.
arXiv Detail & Related papers (2020-02-21T09:09:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.