Attention with Markov: A Framework for Principled Analysis of
Transformers via Markov Chains
- URL: http://arxiv.org/abs/2402.04161v1
- Date: Tue, 6 Feb 2024 17:18:59 GMT
- Title: Attention with Markov: A Framework for Principled Analysis of
Transformers via Markov Chains
- Authors: Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle,
Martin Jaggi, Hyeji Kim, Michael Gastpar
- Abstract summary: We study the sequential modeling capabilities of transformers through the lens of Markov chains.
Inspired by the Markovianity of natural languages, we model the data as a Markovian source.
We show the existence of global minima and bad local minima contingent upon the specific data characteristics and the transformer architecture.
- Score: 48.146073732531605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, attention-based transformers have achieved tremendous
success across a variety of disciplines including natural languages. A key
ingredient behind their success is the generative pretraining procedure, during
which these models are trained on a large text corpus in an auto-regressive
manner. To shed light on this phenomenon, we propose a new framework that
allows both theory and systematic experiments to study the sequential modeling
capabilities of transformers through the lens of Markov chains. Inspired by the
Markovianity of natural languages, we model the data as a Markovian source and
utilize this framework to systematically study the interplay between the
data-distributional properties, the transformer architecture, the learnt
distribution, and the final model performance. In particular, we theoretically
characterize the loss landscape of single-layer transformers and show the
existence of global minima and bad local minima contingent upon the specific
data characteristics and the transformer architecture. Backed by experiments,
we demonstrate that our theoretical findings are in congruence with the
empirical results. We further investigate these findings in the broader context
of higher order Markov chains and deeper architectures, and outline open
problems in this arena. Code is available at
\url{https://github.com/Bond1995/Markov}.
Related papers
- Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
We study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model.
Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model.
arXiv Detail & Related papers (2024-09-28T13:24:11Z) - Transformers on Markov Data: Constant Depth Suffices [25.83132046480226]
We study the behavior of transformers on data drawn from kth Markov processes.
We find that a transformer with a fixed depth and $1$ head per layer is able to achieve low test loss on sequences drawn from kth Markov sources.
arXiv Detail & Related papers (2024-07-25T01:07:09Z) - Local to Global: Learning Dynamics and Effect of Initialization for Transformers [20.02103237675619]
We focus on first-order Markov chains and single-layer transformers.
We prove that transformer parameters trained on next-token prediction loss can either converge to global or local minima.
arXiv Detail & Related papers (2024-06-05T08:57:41Z) - From Self-Attention to Markov Models: Unveiling the Dynamics of
Generative Transformers [41.82477691012942]
We study learning a 1-layer self-attention model from a set of prompts and associated output data.
We first establish a precise mapping between the self-attention mechanism and Markov models.
We characterize an intriguing winner-takes-all phenomenon where the generative process implemented by self-attention collapses into sampling a limited subset of tokens.
arXiv Detail & Related papers (2024-02-21T03:51:34Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
We show that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts.
Our experiments show that replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices.
arXiv Detail & Related papers (2021-06-10T21:04:18Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Transformers with Competitive Ensembles of Independent Mechanisms [97.93090139318294]
We propose a new Transformer layer which divides the hidden representation and parameters into multiple mechanisms, which only exchange information through attention.
We study TIM on a large-scale BERT model, on the Image Transformer, and on speech enhancement and find evidence for semantically meaningful specialization as well as improved performance.
arXiv Detail & Related papers (2021-02-27T21:48:46Z) - Masked Language Modeling for Proteins via Linearly Scalable Long-Context
Transformers [42.93754828584075]
We present a new Transformer architecture, Performer, based on Fast Attention Via Orthogonal Random features (FAVOR)
Our mechanism scales linearly rather than quadratically in the number of tokens in the sequence, is characterized by sub-quadratic space complexity and does not incorporate any sparsity pattern priors.
It provides strong theoretical guarantees: unbiased estimation of the attention matrix and uniform convergence.
arXiv Detail & Related papers (2020-06-05T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.